Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Eur J Neurosci ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267207

RESUMEN

Phosphoinositides, such as PI(4,5)P2, are known to function as structural components of membranes, signalling molecules, markers of membrane identity, mediators of protein recruitment and regulators of neurotransmission and synaptic development. Phosphatidylinositol 4-kinases (PI4Ks) synthesize PI4P, which are precursors for PI(4,5)P2, but may also have independent functions. The roles of PI4Ks in neurotransmission and synaptic development have not been studied in detail. Previous studies on PI4KII and PI4KIIIß at the Drosophila larval neuromuscular junction have suggested that PI4KII and PI4KIIIß enzymes may serve redundant roles, where single PI4K mutants yielded mild or no synaptic phenotypes. However, the precise synaptic functions (neurotransmission and synaptic growth) of these PI4Ks have not been thoroughly studied. Here, we used PI4KII and PI4KIIIß null mutants and presynaptic-specific knockdowns of these PI4Ks to investigate their roles in neurotransmission and synaptic growth. We found that PI4KII and PI4KIIIß appear to have non-overlapping functions. Specifically, glial PI4KII functions to restrain synaptic growth, whereas presynaptic PI4KIIIß promotes synaptic growth. Furthermore, loss of PI4KIIIß or presynaptic PI4KII impairs neurotransmission. The data presented in this study uncover new roles for PI4K enzymes in neurotransmission and synaptic growth.

4.
Nat Commun ; 15(1): 3806, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714658

RESUMEN

Unlike coding genes, the number of lncRNA genes in organism genomes is relatively proportional to organism complexity. From plants to humans, the tissues with highest numbers and levels of lncRNA gene expression are the male reproductive organs. To learn why, we initiated a genome-wide analysis of Drosophila lncRNA spatial expression patterns in these tissues. The numbers of genes and levels of expression observed greatly exceed those previously reported, due largely to a preponderance of non-polyadenylated transcripts. In stark contrast to coding genes, the highest numbers of lncRNAs expressed are in post-meiotic spermatids. Correlations between expression levels, localization and previously performed genetic analyses indicate high levels of function and requirement. More focused analyses indicate that lncRNAs play major roles in evolution by controlling transposable element activities, Y chromosome gene expression and sperm construction. A new type of lncRNA-based particle found in seminal fluid may also contribute to reproductive outcomes.


Asunto(s)
ARN Largo no Codificante , Espermatogénesis , Cromosoma Y , Animales , Masculino , Espermatogénesis/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Cromosoma Y/genética , Drosophila melanogaster/genética , Evolución Molecular , Elementos Transponibles de ADN/genética , Drosophila/genética , Espermátides/metabolismo
5.
Elife ; 122023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36795469

RESUMEN

Proper differentiation of sperm from germline stem cells, essential for production of the next generation, requires dramatic changes in gene expression that drive remodeling of almost all cellular components, from chromatin to organelles to cell shape itself. Here, we provide a single nucleus and single cell RNA-seq resource covering all of spermatogenesis in Drosophila starting from in-depth analysis of adult testis single nucleus RNA-seq (snRNA-seq) data from the Fly Cell Atlas (FCA) study. With over 44,000 nuclei and 6000 cells analyzed, the data provide identification of rare cell types, mapping of intermediate steps in differentiation, and the potential to identify new factors impacting fertility or controlling differentiation of germline and supporting somatic cells. We justify assignment of key germline and somatic cell types using combinations of known markers, in situ hybridization, and analysis of extant protein traps. Comparison of single cell and single nucleus datasets proved particularly revealing of dynamic developmental transitions in germline differentiation. To complement the web-based portals for data analysis hosted by the FCA, we provide datasets compatible with commonly used software such as Seurat and Monocle. The foundation provided here will enable communities studying spermatogenesis to interrogate the datasets to identify candidate genes to test for function in vivo.


Asunto(s)
Células Madre Adultas , Testículo , Animales , Masculino , Testículo/metabolismo , Drosophila , RNA-Seq , Semen
6.
Development ; 150(4)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36695474

RESUMEN

Drosophila sperm development is characterized by extensive post-transcriptional regulation whereby thousands of transcripts are preserved for translation during later stages. A key step in translation initiation is the binding of eukaryotic initiation factor 4E (eIF4E) to the 5' mRNA cap. In addition to canonical eIF4E-1, Drosophila has multiple eIF4E paralogs, including four (eIF4E-3, -4, -5, and -7) that are highly expressed in the testis. Among these, only eIF4E-3 has been characterized genetically. Here, using CRISPR/Cas9 mutagenesis, we determined that eIF4E-5 is essential for male fertility. eIF4E-5 protein localizes to the distal ends of elongated spermatid cysts, and eIF4E-5 mutants exhibit defects during post-meiotic stages, including a mild defect in spermatid cyst polarization. eIF4E-5 mutants also have a fully penetrant defect in individualization, resulting in failure to produce mature sperm. Indeed, our data indicate that eIF4E-5 regulates non-apoptotic caspase activity during individualization by promoting local accumulation of the E3 ubiquitin ligase inhibitor Soti. Our results further extend the diversity of non-canonical eIF4Es that carry out distinct spatiotemporal roles during spermatogenesis.


Asunto(s)
Drosophila melanogaster , Semen , Animales , Masculino , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Semen/metabolismo , Drosophila/metabolismo , Espermatogénesis/genética , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo
7.
Methods Mol Biol ; 2557: 29-37, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36512207

RESUMEN

Immunofluorescence is an important research tool in cell biology that reveals structural organization of subcellular organelles by detecting their associated constituents. Here, we describe an antibody staining method to detect Golgi-associated proteins in Drosophila larval salivary glands, using the cis-Golgi protein Lava lamp and the clathrin adaptor AP-1 as a suitable example. Golgi bodies immunostained using this protocol can be visualized using confocal or structured illumination microscopy.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Drosophila melanogaster/metabolismo , Larva/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Aparato de Golgi/metabolismo , Glándulas Salivales/metabolismo , Técnica del Anticuerpo Fluorescente
8.
9.
iScience ; 25(10): 105188, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36248734

RESUMEN

Cell proliferation is dependent on growth factors insulin and IGF1. We sought to identify interactors of IRS1, the most proximal mediator of insulin/IGF1 signaling, that regulate cell proliferation. Using proximity-dependent biotin identification (BioID), we detected 40 proteins displaying proximal interactions with IRS1, including DCAF7 and its interacting partners DYRK1A and DYRK1B. In HepG2 cells, DCAF7 knockdown attenuated cell proliferation by inducing cell cycle arrest at G2. DCAF7 expression was required for insulin-stimulated AKT phosphorylation, and its absence promoted nuclear localization of the transcription factor FOXO1. DCAF7 knockdown induced expression of FOXO1-target genes implicated in G2 cell cycle inhibition, correlating with G2 cell cycle arrest. In Drosophila melanogaster, wing-specific knockdown of DCAF7/wap caused smaller wing size and lower wing cell number; the latter recovered upon double knockdown of wap and dfoxo. We propose that DCAF7 regulates cell proliferation and cell cycle via IRS1-FOXO1 signaling, of relevance to whole organism growth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA