Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Mater ; 17(3): 231-236, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29403056

RESUMEN

The discovery of a two-dimensional electron gas (2DEG) at the LaAlO3/SrTiO3 interface 1 has resulted in the observation of many properties2-5 not present in conventional semiconductor heterostructures, and so become a focal point for device applications6-8. Its counterpart, the two-dimensional hole gas (2DHG), is expected to complement the 2DEG. However, although the 2DEG has been widely observed 9 , the 2DHG has proved elusive. Herein we demonstrate a highly mobile 2DHG in epitaxially grown SrTiO3/LaAlO3/SrTiO3 heterostructures. Using electrical transport measurements and in-line electron holography, we provide direct evidence of a 2DHG that coexists with a 2DEG at complementary heterointerfaces in the same structure. First-principles calculations, coherent Bragg rod analysis and depth-resolved cathodoluminescence spectroscopy consistently support our finding that to eliminate ionic point defects is key to realizing a 2DHG. The coexistence of a 2DEG and a 2DHG in a single oxide heterostructure provides a platform for the exciting physics of confined electron-hole systems and for developing applications.

2.
Nanoscale ; 8(14): 7631-7, 2016 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-26987850

RESUMEN

The spatial distribution of defect related deep band emission has been studied in zinc oxide (ZnO) nano- and microwires using depth resolved cathodoluminescence spectroscopy (DRCLS) in a hyperspectral imaging (HSI) mode within a UHV scanning electron microscope (SEM). Three sets of wires were examined that had been grown by pulsed laser deposition or vapor transport methods and ranged in diameter from 200 nm-2.7 µm. This data was analyzed by developing a 3D DRCLS simulation and using it to estimate the segregation depth and decay profile of the near surface defects. We observed different dominant defects from each growth process as well as diameter-dependent defect segregation behavior.

3.
Rev Sci Instrum ; 84(6): 065105, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23822376

RESUMEN

We designed a mechanism and the accompanying sample holders to transfer between a VEECO 930 oxide molecular beam epitaxy (MBE) and a PHI Versa Probe X-ray photoemission spectroscopy (XPS) chamber within a multiple station growth, processing, and analysis system through ultrahigh vacuum (UHV). The mechanism consists of four parts: (1) a platen compatible with the MBE growth stage, (2) a platen compatible with the XPS analysis stage, (3) a sample coupon that is transferred between the two platens, and (4) the accompanying UHV transfer line. The mechanism offers a robust design that enables transfer back and forth between the growth chamber and the analysis chamber, and yet is flexible enough to allow transfer between standard sample holders for thin film growth and masked sample holders for making electrical contacts and Schottky junctions, all without breaking vacuum. We used this mechanism to transfer a barium strontium titanate thin film into the XPS analysis chamber and performed XPS measurements before and after exposing the sample to the air. After air exposure, a thin overlayer of carbon was found to form and a significant shift (~1 eV) in the core level binding energies was observed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...