Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pharm Sci ; 109(6): 2024-2032, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32179079

RESUMEN

Despite the widespread use of surfactants, there are known issues such as allergic reactions and formulation complications in their use as emulsion stabilizers. In this study, stabilizer-free water-in-oil (W/O) emulsions containing water, phytantriol, and almond oil were prepared by an ultra-turrax homogenizer, a standard laboratory equipment, and a high specialized high-shear device. Parameters such as mixing time, stirring rate, composition, order of addition of phases, and temperature were investigated to systematically optimize the preparation of the formulations through evaluating their accelerated physical stability by a centrifugal sedimentation technique. The liquid crystalline structure of the continuous phase was studied by small-angle X-ray scattering indicating a reverse hexagonal phase (H2). Microscopy images showed the emulsions prepared via high-shear method had smaller water droplets with more uniform shape and better dispersion as confirmed by Fourier-transform infrared-attenuated total reflection spectroscopy. Rheology studies showed a larger yield stress value for emulsions with higher content of phytantriol. Our results indicated that emulsions prepared by the high-shear device with higher amount of phytantriol were the most stable formulations. Applying the correct variables in the preparation of the stabilizer-free emulsions using ultra-turrax homogenizer, one could obtain similarly stable emulsions lacking the uniformity of the droplets.


Asunto(s)
Cristales Líquidos , Agua , Emulsiones , Alcoholes Grasos
2.
Colloids Surf B Biointerfaces ; 188: 110787, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31954269

RESUMEN

Alpha-amylase is frequently used in technologies that require its immobilization, stabilization or encapsulation. Polyacrylic acid is a very suitable polymer for these purposes because it can bind to enzymes and then be released under certain conditions without altering the functional capacity of enzymes. The consequences produced by polyacrylic acid on alpha-amylase structure and function have been investigated through various techniques. Calorimetric measurements allowed examining the nature of the binding reaction, stoichiometry and affinity, while spectroscopic techniques provided additional information about functional and structural perturbations of the enzyme. Isothermal titration calorimetry (ITC) revealed a mixed interaction and a binding model with a large number of molecules of protein per molecule of polyacrylic acid. One the one hand circular dichroism (CD) spectroscopy showed that alpha-amylase loses its secondary structure in the presence of increasing concentrations of polyacrylic acid, while it is stabilized by the polyelectrolyte at low pH. On the other hand, fluorescence spectra revealed that the three-dimensional enzyme structure was not affected in the microenvironment of tryptophan residues. Differential scanning calorimetry (DSC) thermograms showed that only one domain of alpha-amylase is affected in its conformational stability by the polymer. The unfolding process proved to be partially reversible. Finally, the enzyme retained more than 90 % of its catalytic activity even in excess of the polymer.


Asunto(s)
Resinas Acrílicas/química , alfa-Amilasas/química , Resinas Acrílicas/metabolismo , Estructura Molecular , Peso Molecular , alfa-Amilasas/metabolismo
3.
J Colloid Interface Sci ; 538: 51-61, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30500467

RESUMEN

HYPOTHESIS: Cellulose nanocrystals (CNCs) undergo precipitation in the presence of high concentrations of cationic surfactants in aqueous solutions. To avoid such behavior and/or to promote redispersion of CNC/surfactant mixtures, the CNC surface was grafted with poly di(ethylene oxide) methyl ether methacrylate, P(MEO2MA). EXPERIMENTS: CNC-g-P(MEO2MA) was characterized using the following techniques 13C solid-state nuclear magnetic resonance (13C SSNMR), Fourier-transform infrared spectroscopy - attenuated total reflection spectroscopy (FTIR-ATR) and thermal gravimetric analysis (TGA). Isothermal titration calorimetry (ITC), electrophoretic mobility, light scattering and high sensitivity differential scanning calorimetry (HSDSC) were used to study the interaction between CNC-g-P(MEO2MA) and ionic surfactants, dodecyltrimethylammonium bromide (C12TAB, cationic) and sodium dodecylsulfate (SDS, anionic) at temperatures below and above the LCST. FINDINGS: CNC-g-P(MEO2MA) underwent phase separation above its lower critical solution temperature (LCST ∼ 25 °C) and precipitated from solution as seen by HSDSC and transmittance experiments. When C12TAB was added to CNC-g-P(MEO2MA) it induced the precipitation that prevented the redispersion due to strong electrostatic interactions with the negative charges on the CNC surface. With increasing concentrations of SDS, the polymer phase transition temperature was increased, which can be used to redisperse the CNC complexes. By removing SDS from the mixture via dialysis, the CNC-g-P(MEO2MA) underwent subsequent phase transition.


Asunto(s)
Celulosa/química , Metacrilatos/química , Éteres Metílicos/química , Nanopartículas/química , Polietilenglicoles/química , Temperatura , Estructura Molecular , Tamaño de la Partícula , Propiedades de Superficie
4.
Langmuir ; 32(3): 689-98, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26731488

RESUMEN

We report a comprehensive study on the interactions between cationic surfactant homologues CnTAB (n = 12, 14, and 16) with negatively charged cellulose nanocrystals (CNCs). By combining different techniques, such as isothermal titration calorimetry (ITC), surface tension, light scattering, electrophoretic mobility, and fluorescence anisotropy measurements, we identified two different driving forces for the formation of surface induced micellar aggregates. For the C12TAB surfactant, a surfactant monolayer with the alkyl chains exposed to the water is formed via electrostatic interactions at low concentration. At a higher surfactant concentration, micellar aggregates are formed at the CNC surface. For the C14TAB and C16TAB systems, micellar aggregates are formed at the CNC surface at a much lower surfactant concentration via electrostatic interactions, followed by hydrophobic interactions between the alkyl chains. At higher surfactant concentration, charge neutralization and association of the surfactant decorated CNC aggregates led to flocculation.


Asunto(s)
Celulosa/química , Compuestos de Cetrimonio/química , Nanopartículas/química , Tensoactivos/química , Calorimetría , Cetrimonio , Polarización de Fluorescencia , Interacciones Hidrofóbicas e Hidrofílicas , Micelas , Electricidad Estática , Tensión Superficial , Termodinámica , Agua/química
5.
Biochim Biophys Acta ; 1860(5): 999-1016, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26459003

RESUMEN

BACKGROUND: Isothermal titration calorimetry (ITC) is a general technique that allows for precise and highly sensitive measurements. These measurements may provide a complete and accurate thermodynamic description of association processes in complex systems such as colloidal mixtures. SCOPE OF THE REVIEW: This review will address uses of ITC for studies of surfactant aggregation to form micelles, with emphasis on the thermodynamic studies of homologous surfactant series. We will also review studies on surfactant association with polymers of different molecular characteristics and with colloidal particles. GENERAL SIGNIFICANCE: ITC studies on the association of different homologous series of surfactants provide quantitative information on independent contribution from their apolar hydrocarbon chains and polar headgroups to the different thermodynamic functions associated with micellization (Gibbs energy, enthalpy and entropy). Studies on surfactant association to polymers by ITC provide a comprehensive description of the association process, including examples in which particular features revealed by ITC were elucidated by using ancillary techniques such as light or X-ray scattering measurements. Examples of uses of ITC to follow surfactant association to biomolecules such as proteins or DNA, or nanoparticles are also highlighted. Finally, recent theoretical models that were proposed to analyze ITC data in terms of binding/association processes are discussed. MAJOR CONCLUSIONS: This review stresses the importance of using direct calorimetric measurements to obtain and report accurate thermodynamic data, even in complex systems. These data, whenever possible, should be confirmed and associated with other ancillary techniques that allow elucidation of the nature of the transformations detected by calorimetric results, providing a complete description of the process under scrutiny.


Asunto(s)
ADN/química , Nanopartículas/química , Proteínas/química , Tensoactivos/química , Calorimetría/métodos , Coloides , Interacciones Hidrofóbicas e Hidrofílicas , Micelas , Electricidad Estática , Temperatura , Termodinámica
6.
Carbohydr Res ; 409: 48-55, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-25933198

RESUMEN

A simple protocol was used to prepare amine functionalized cellulose nanocrystals (CNC-NH2). In the first step, epichlorohydrin (EPH) was reacted with ammonium hydroxide to produce 2-hydroxy-3-chloro propylamine (HCPA). In the next step, HCPA was grafted to CNC using the etherification reaction in an organic solution media. Various reaction parameters, such as time, temperature, and reactant molar ratio were performed to determine the optimal reaction conditions. The final product (CNC-NH2(T)) was dialyzed for a week. Further purification via centrifugation yielded the sediment (CNC-NH2(P)) and supernatant (POLY-NH2). The presence of amine groups on the surface of modified CNC was confirmed by FTIR and the amine content was determined by potentiometric titration and elemental analysis. A high amine content of 2.2 and 0.6 mmol amine/g was achieved for CNC-NH2(T) and CNC-NH2(P), respectively. Zeta potential measurements confirmed the charge reversal of amine CNC from positive to negative when the pH was increased from 3 to 10. The flocculation of amine functionalized CNC due to its interactions with a negatively charged surfactant namely, sodium dodecyl sulfate (SDS) was investigated at pH 4. It showed promising results for applications, such as in flocculation of fine dispersions in water treatment. This simple and versatile synthetic method to produce high amine content CNC can be used for further conjugation as required for various applications.


Asunto(s)
Aminas/química , Celulosa/química , Nanopartículas/química , Concentración de Iones de Hidrógeno
7.
Langmuir ; 30(21): 6002-10, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24823937

RESUMEN

The micellization of a homologous series of zwitterionic surfactants, a group of sulfobetaines, was studied using isothermal titration calorimetry (ITC) in the temperature range from 15 to 65 °C. The increase in both temperature and the alkyl chain length leads to more negative values of ΔGmic(0) , favoring the micellization. The entropic term (ΔSmic(0)) is predominant at lower temperatures, and above ca. 55-65 °C, the enthalpic term (ΔHmic(0)) becomes prevalent, figuring a jointly driven process as the temperature increases. The interaction of these sulfobetaines with different polymers was also studied by ITC. Among the polymers studied, only two induced the formation of micellar aggregates at lower surfactant concentration: poly(acrylic acid), PAA, probably due to the formation of hydrogen bonds between the carboxylic group of the polymer and the sulfonate group of the surfactant, and poly(sodium 4-styrenesulfonate), PSS, probably due to the incorporation of the hydrophobic styrene group into the micelles. The prevalence of the hydrophobic and not the electrostatic contributions to the interaction between sulfobetaine and PSS was confirmed by an increased interaction enthalpy in the presence of electrolytes (NaCl) and by the observation of a significant temperature dependence, the latter consistent with the proposed removal of hydrophobic groups from water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...