Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 24(11): 7134-7143, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35262146

RESUMEN

Armchair graphene nanoribbons, when forming a superlattice, can be classified into different topological phases, with or without edge states. By means of tight-binding and classical molecular dynamics (MD) simulations, we studied the electronic and mechanical properties of some of these superlattices. MD shows that fracture in modulated superlattices is brittle, as for unmodulated ribbons, and occurs at the thinner regions, with staggered superlattices achieving a larger fracture strain than inline superlattices. We found a general mechanism to induce a topological transition with strain, related to the electronic properties of each segment of the superlattice, and by studying the sublattice polarization we were able to characterize the transition and the response of these states to the strain. For the cases studied in detail here, the topological transition occurred at ∼3-5% strain, well below the fracture strain. The topological states of the superlattice - if present - are robust to strain even close to fracture. The topological transition was characterized by means of the sublattice polarization of the states.

2.
Nanotechnology ; 32(4): 045709, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33045683

RESUMEN

There are many simulation studies of mechanical properties of graphene nanoribbons (GNR), but there is a lack of agreement regarding elastic and plastic behavior. In this paper we aim to analyze mechanical properties of finite-size GNR, including elastic modulus and fracture, as a function of ribbon size. We present classical molecular dynamics simulations for three different empirical potentials which are often used for graphene simulations: AIREBO, REBO-scr and REAXFF. Ribbons with and without H-passivation at the borders are considered, and the effects of strain rate and different boundaries are also explored. We focus on zig-zag GNR, but also include some armchair GNR examples. Results are strongly dependent on the empirical potential employed. Elastic modulus under uniaxial tension can depend on ribbon size, unlike predictions from continuum-scale models and from some atomistic simulations, and fracture strain and progress vary significantly amongst the simulated potentials. Because of that, we have also carried out quasi-static ab-initio simulations for a selected size, and find that the fracture process is not sudden, instead the wave function changes from Blöch states to a strong interaction between localized waves, which decreases continuously with distance. All potentials show good agreement with DFT in the linear elastic regime, but only the REBO-scr potential shows reasonable agreement with DFT both in the nonlinear elastic and fracture regimes. This would allow more reliable simulations of GNRs and GNR-based nanostructures, to help interpreting experimental results and for future technological applications.

3.
Sci Rep ; 10(1): 21096, 2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33273535

RESUMEN

Mechanical properties of nanomaterials, such as nanowires and nanotubes, are an important feature for the design of novel electromechanical nano-architectures. Since grain boundary structures and surface modifications can be used as a route to modify nanostructured materials, it is of interest to understand how they affect material strength and plasticity. We report large-scale atomistic simulations to determine the mechanical response of nickel nanowires and nanotubes subject to uniaxial compression. Our results suggest that the incorporation of nanocrystalline structure allows completely flexible deformation, in sharp contrast with single crystals. While crystalline structures at high compression are dominated by dislocation pinning and the multiplication of highly localized shear regions, in nanocrystalline systems the dislocation distribution is significantly more homogeneous. Therefore, for large compressions (large strains) coiling instead of bulging is the dominant deformation mode. Additionally, it is observed that nanotubes with only 70% of the nanowire mass but of the same diameter, exhibit similar mechanical behavior up to 0.3 strain. Our results are useful for the design of new flexible and light-weight metamaterials, when highly deformable struts are required.

4.
Phys Chem Chem Phys ; 20(24): 16347-16353, 2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-29683154

RESUMEN

We studied the soft landing of Ni atoms on a previously damaged graphene sheet by means of molecular dynamics simulations. We found a monotonic decrease of the cluster frequency as a function of its size, but few big clusters comprise an appreciable fraction of the total number of Ni atoms. The aggregation of Ni atoms is also modeled by means of a simple phenomenological model. The results are in clear contrast with the case of hard or energetic landing of metal atoms, where there is a tendency to form mono-disperse metal clusters. This behavior is attributed to the high diffusion of unattached Ni atoms, together with vacancies acting as capture centers. The findings of this work show that a simple study of the energetics of the system is not enough in the soft landing regime, where it is unavoidable to also consider the growth process of metal clusters.

5.
Sci Rep ; 6: 26977, 2016 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-27264746

RESUMEN

Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolution we successfully predict a dislocation density of 1.5 × 10(12) cm(-2) within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon.

6.
Phys Chem Chem Phys ; 18(20): 13897-903, 2016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-27145734

RESUMEN

Ripples present in free standing graphene have an important influence on the mechanical behavior of this two-dimensional material. In this study, we show through nanoindentation simulations, how out-of-plane displacements can be modified by strain, resulting in softening of the membrane under compression and stiffening under tension. Irradiation also induces changes in the mechanical properties of graphene. Interestingly, compressed samples, irradiated at low doses are stiffened by the irradiation, whereas the samples under tensile strain do not show significant changes in their mechanical properties. These simulations indicate that vacancies produced by the energetic ions cannot be the ones directly responsible for this behavior. However, changes in roughness induced by the momentum transferred from the energetic ions to the membrane, can explain these differences. These results provide an alternative explanation to recent experimental observations of the stiffening of graphene under low dose irradiation, as well as the paths to tailor the mechanical properties of this material via applied strain and irradiation.

7.
Sci Rep ; 5: 16892, 2015 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-26592764

RESUMEN

Plasticity is often controlled by dislocation motion, which was first measured for low pressure, low strain rate conditions decades ago. However, many applications require knowledge of dislocation motion at high stress conditions where the data are sparse, and come from indirect measurements dominated by the effect of dislocation density rather than velocity. Here we make predictions based on atomistic simulations that form the basis for a new approach to measure dislocation velocities directly at extreme conditions using three steps: create prismatic dislocation loops in a near-surface region using nanoindentation, drive the dislocations with a shockwave, and use electron microscopy to determine how far the dislocations moved and thus their velocity at extreme stress and strain rate conditions. We report on atomistic simulations of tantalum that make detailed predictions of dislocation flow, and find that the approach is feasible and can uncover an exciting range of phenomena, such as transonic dislocations and a novel form of loop stretching. The simulated configuration enables a new class of experiments to probe average dislocation velocity at very high applied shear stress.

8.
Sci Rep ; 5: 15064, 2015 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-26478106

RESUMEN

The structural and mechanical response of metals is intimately connected to phase transformations. For instance, the product of a phase transformation (martensite) is responsible for the extraordinary range of strength and toughness of steel, making it a versatile and important structural material. Although abundant in metals and alloys, the discovery of new phase transformations is not currently a common event and often requires a mix of experimentation, predictive computations, and luck. High-energy pulsed lasers enable the exploration of extreme pressures and temperatures, where such discoveries may lie. The formation of a hexagonal (omega) phase was observed in recovered monocrystalline body-centered cubic tantalum of four crystallographic orientations subjected to an extreme regime of pressure, temperature, and strain-rate. This was accomplished using high-energy pulsed lasers. The omega phase and twinning were identified by transmission electron microscopy at 70 GPa (determined by a corresponding VISAR experiment). It is proposed that the shear stresses generated by the uniaxial strain state of shock compression play an essential role in the transformation. Molecular dynamics simulations show the transformation of small nodules from body-centered cubic to a hexagonal close-packed structure under the same stress state (pressure and shear).


Asunto(s)
Rayos Láser , Modelos Teóricos , Transición de Fase , Tantalio/química
9.
Phys Rev Lett ; 114(11): 118302, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25839315

RESUMEN

We show direct experimental evidence that radiation effects produced by single MeV heavy ions on a polymer surface are weakened when the length of the ion track in the material is confined into layers of a few tens of nanometers. Deviation from the bulk (thick film) behavior of ion-induced craters starts at a critical thickness as large as ∼40 nm, due to suppression of long-range additive effects of excited atoms along the track. Good agreement was found between the experimental results, molecular dynamic simulations, and an analytical model.


Asunto(s)
Iones Pesados , Modelos Químicos , Polimetil Metacrilato/química , Simulación de Dinámica Molecular
10.
Nano Lett ; 12(7): 3351-5, 2012 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-21651306

RESUMEN

The key to perfect radiation endurance is perfect recovery. Since surfaces are perfect sinks for defects, a porous material with a high surface to volume ratio has the potential to be extremely radiation tolerant, provided it is morphologically stable in a radiation environment. Experiments and computer simulations on nanoscale gold foams reported here show the existence of a window in the parameter space where foams are radiation tolerant. We analyze these results in terms of a model for the irradiation response that quantitatively locates such window that appears to be the consequence of the combined effect of two length scales dependent on the irradiation conditions: (i) foams with ligament diameters below a minimum value display ligament melting and breaking, together with compaction increasing with dose (this value is typically ∼5 nm for primary knock on atoms (PKA) of ∼15 keV in Au), while (ii) foams with ligament diameters above a maximum value show bulk behavior, that is, damage accumulation (few hundred nanometers for the PKA's energy and dose rate used in this study). In between these dimensions, (i.e., ∼100 nm in Au), defect migration to the ligament surface happens faster than the time between cascades, ensuring radiation resistance for a given dose-rate. We conclude that foams can be tailored to become radiation tolerant.

11.
J Phys Condens Matter ; 22(6): 065404, 2010 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-21389369

RESUMEN

In situ x-ray diffraction has been used to measure the shear strain (and thus strength) of single crystal copper shocked to 100 GPa pressures at strain rates over two orders of magnitude higher than those achieved previously. For shocks in the [001] direction there is a significant associated shear strain, while shocks in the [111] direction give negligible shear strain. We infer, using molecular dynamics simulations and VISAR (standing for 'velocity interferometer system for any reflector') measurements, that the strength of the material increases dramatically (to approximately 1 GPa) for these extreme strain rates.

12.
Nat Mater ; 5(10): 805-9, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16980954

RESUMEN

Despite its fundamental importance for a broad range of applications, little is understood about the behaviour of metals during the initial phase of shock compression. Here, we present molecular dynamics (MD) simulations of shock-wave propagation through a metal allowing a detailed analysis of the dynamics of high strain-rate plasticity. Previous MD simulations have not seen the evolution of the strain from one- to three-dimensional compression that is observed in diffraction experiments. Our large-scale MD simulations of up to 352 million atoms resolve this important discrepancy through a detailed understanding of dislocation flow at high strain rates. The stress relaxes to an approximately hydrostatic state and the dislocation velocity drops to nearly zero. The dislocation velocity drop leads to a steady state with no further relaxation of the lattice, as revealed by simulated X-ray diffraction.

13.
Phys Rev Lett ; 88(16): 165501, 2002 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-11955237

RESUMEN

A fast ion can electronically excite a solid producing a track of damage, a process initially used to detect energetic particles but now used to alter materials. From the seminal paper by Fleischer et al. [Phys. Rev. 156, 353 (1967)] to the present, "Coulomb explosion" and thermal spike models have been often treated as competing models for describing ion track effects. Here molecular dynamics simulations of electronic sputtering, a surface manifestation of track formation, show that in the absence of significant quenching Coulomb explosion in fact produces a spike at high excitation density, but the standard spike models are incorrect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...