Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Mol Microbiol Biotechnol ; 16(1-2): 6-13, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-18957858

RESUMEN

Gluconobacter oxydans is famous for its rapid and incomplete oxidation of a wide range of sugars and sugar alcohols. The organism is known for its efficient oxidation of D-glucose to D-gluconate, which can be further oxidized to two different keto-D-gluconates, 2-keto-D-gluconate and 5-keto-D-gluconate, as well as 2,5-di-keto-D-gluconate. For this oxidation chain and for further oxidation reactions, G. oxydans possesses a high number of membrane-bound dehydrogenases. In this review, we focus on the dehydrogenases involved in D-glucose oxidation and the products formed during this process. As some of the involved dehydrogenases contain pyrroloquinoline quinone (PQQ) as a cofactor, also PQQ synthesis is reviewed. Finally, we will give an overview of further PQQ-dependent dehydrogenases and discuss their functions in G. oxydans ATCC 621H (DSM 2343).


Asunto(s)
Gluconobacter oxydans/enzimología , Glucosa/metabolismo , Cofactor PQQ/metabolismo , Coenzimas/metabolismo , Gluconobacter oxydans/genética , Glucosa/genética , Oxidación-Reducción , Oxidorreductasas/metabolismo , Cofactor PQQ/genética
2.
Int J Food Microbiol ; 125(1): 91-5, 2008 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-17976848

RESUMEN

Gluconobacter oxydans is known for causing rapid and incomplete oxidation of a wide range of sugars, sugar acids and sugar alcohols. Therefore, this microorganism is already employed in several biotechnological processes that involve incomplete oxidation of a substrate, e.g. vitamin C or dihydroxyacetone production. To fully exploit the oxidative potential of G. oxydans, characterization of the biological role of gene products is essential. To take advantage of the genome sequence of G. oxydans DSM 2343, based on pBBR1MCS5, we constructed a new cloning and expression vector. The newly established vector pEXGOX will significantly decrease duration of cloning and increase cloning efficiency. It has the following advantages: (i) small size (5.7 kbp); (ii) complete sequence; (iii) variety of unique restriction sites; (iv) direct cloning of PCR products; (v) strong promoter. The pEXGOX plasmid was successfully used to clone G. oxydans genes and has the potential to facilitate studies of gene function of several G. oxydans open reading frames.


Asunto(s)
Clonación Molecular , Vectores Genéticos , Gluconobacter oxydans/genética , Plásmidos , Ácido Acético/metabolismo , Secuencia de Bases , ADN Bacteriano/química , ADN Bacteriano/genética , Genes Bacterianos , Gluconobacter oxydans/metabolismo , Datos de Secuencia Molecular , Sistemas de Lectura Abierta
3.
J Biotechnol ; 132(4): 438-44, 2007 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17826859

RESUMEN

The reduction of methyl acetoacetate was carried out in continuously operated biotransformation processes catalyzed by recombinant Escherichia coli cells expressing an alcohol dehydrogenase from Lactobacillus brevis. Three different cell types were applied as biocatalysts in three different cofactor regeneration approaches. Both processes with enzyme-coupled cofactor regeneration catalyzed by formate dehydrogenase or glucose dehydrogenase are characterized by a rapid deactivation of the biocatalyst. By contrast the processes with substrate-coupled cofactor regeneration by alcohol dehydrogenase catalyzed oxidation of 2-propanol could be run over a period of 7 weeks with exceedingly high substrate and cosubstrate concentrations of up to 2.5 and 2.8 mol L(-1), respectively. Even under these extreme conditions, the applied biocatalyst showed a good stability with only marginal leakage of intracellular cofactors.


Asunto(s)
Biotransformación , Escherichia coli/metabolismo , Cetonas/metabolismo , Acetoacetatos/metabolismo , Reactores Biológicos , ADN Recombinante , Formiato Deshidrogenasas , Glucosa Deshidrogenasas
4.
Biotechnol J ; 2(11): 1408-16, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17619232

RESUMEN

An in vivo system was developed for the biotransformation of D-fructose into D-mannitol by the expression of the gene mdh encoding mannitol dehydrogenase (MDH) from Leuconostoc pseudomesenteroides ATCC12291 in Bacillus megaterium. The NADH reduction equivalents necessary for MDH activity were regenerated via the oxidation of formate to carbon dioxide by coexpression of the gene fdh encoding Mycobacterium vaccae N10 formate dehydrogenase (FDH). High-level protein production of MDH in B. megaterium required the adaptation of the corresponding ribosome binding site. The fdh gene was adapted to B. megaterium codon usage via complete chemical gene synthesis. Recombinant B. megaterium produced up to 10.60 g/L D-mannitol at the shaking flask scale. Whole cell biotransformation in a fed-batch bioreactor increased D-mannitol concentration to 22.00 g/L at a specific productivity of 0.32 g D-mannitol (gram cell dry weight)(-1) h(-1) and a D-mannitol yield of 0.91 mol/mol. The nicotinamide adenine dinucleotide (NAD(H)) pool of the B. megaterium producing D-mannitol remained stable during biotransformation. Intra- and extracellular pH adjusted itself to a value of 6.5 and remained constant during the process. Data integration revealed that substrate uptake was the limiting factor of the overall biotransformation. The information obtained identified B. megaterium as a useful production host for D-mannitol using a resting cell biotransformation approach.


Asunto(s)
Bacillus megaterium/metabolismo , Formiato Deshidrogenasas/metabolismo , Fructosa/metabolismo , Manitol Deshidrogenasas/metabolismo , Manitol/metabolismo , Bacillus megaterium/genética , Biotransformación , Electroforesis en Gel de Poliacrilamida , Formiato Deshidrogenasas/genética , Concentración de Iones de Hidrógeno , Leuconostoc/enzimología , Leuconostoc/genética , Manitol Deshidrogenasas/genética , NAD/metabolismo
5.
Appl Microbiol Biotechnol ; 76(3): 553-9, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17497148

RESUMEN

The genus Gluconobacter is well known for its rapid and incomplete oxidation of a wide range of substrates. Therefore, Gluconobacter oxydans especially is used for several biotechnological applications, e.g., the efficient oxidation of glycerol to dihydroxyacetone (DHA). For this reaction, G. oxydans is equipped with a membrane-bound glycerol dehydrogenase that is also described to oxidize sorbitol, gluconate, and arabitol. Here, we demonstrated the impact of sldAB overexpression on glycerol oxidation: Beside a beneficial effect on the transcript level of the sldB gene, the growth on glycerol as a carbon source was significantly improved in the overexpression strains (OD 2.8 to 2.9) compared to the control strains (OD 2.8 to 2.9). Furthermore, the DHA formation rate, as well as the final DHA concentration, was affected so that up to 350 mM of DHA was accumulated by the overexpression strains when 550 mM glycerol was supplied (control strain: 200 to 280 mM DHA). Finally, we investigated the effect on sldAB overexpression on the G. oxydans transcriptome and identified two genes involved in glycerol metabolism, as well as a regulator of the LysR family.


Asunto(s)
Dihidroxiacetona/biosíntesis , Gluconobacter oxydans/metabolismo , Glicerol/metabolismo , Secuencia de Bases , Biotecnología , Biotransformación , ADN Bacteriano/genética , Expresión Génica , Genes Bacterianos , Gluconobacter oxydans/genética , Gluconobacter oxydans/crecimiento & desarrollo , Oxidación-Reducción , Regiones Promotoras Genéticas , Recombinación Genética , Deshidrogenasas del Alcohol de Azúcar/genética , Deshidrogenasas del Alcohol de Azúcar/metabolismo
6.
Appl Microbiol Biotechnol ; 76(3): 545-52, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17503033

RESUMEN

A recombinant oxidation/reduction cycle for the conversion of D-fructose to D-mannitol was established in resting cells of Corynebacterium glutamicum. Whole cells were used as biocatalysts, supplied with 250 mM sodium formate and 500 mM D-fructose at pH 6.5. The mannitol dehydrogenase gene (mdh) from Leuconostoc pseudomesenteroides was overexpressed in strain C. glutamicum ATCC 13032. To ensure sufficient cofactor [nicotinamide adenine dinucleotide (reduced form, NADH)] supply, the fdh gene encoding formate dehydrogenase from Mycobacterium vaccae N10 was coexpressed. The recombinant C. glutamicum cells produced D-mannitol at a constant production rate of 0.22 g (g cdw)(-1) h(-1). Expression of the glucose/fructose facilitator gene glf from Zymomonas mobilis in C. glutamicum led to a 5.5-fold increased productivity of 1.25 g (g cdw)(-1) h(-1), yielding 87 g l(-1) D-mannitol from 93.7 g l(-1) D-fructose. Determination of intracellular NAD(H) concentration during biotransformation showed a constant NAD(H) pool size and a NADH/NAD(+) ratio of approximately 1. In repetitive fed-batch biotransformation, 285 g l(-1) D-mannitol over a time period of 96 h with an average productivity of 1.0 g (g cdw)(-1) h(-1) was formed. These results show that C. glutamicum is a favorable biocatalyst for long-term biotransformation with resting cells.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Manitol/metabolismo , Secuencia de Bases , Biotecnología , Biotransformación , Cartilla de ADN/genética , ADN Bacteriano/genética , Formiato Deshidrogenasas/genética , Formiato Deshidrogenasas/metabolismo , Fructosa/metabolismo , Expresión Génica , Genes Bacterianos , Leuconostoc/enzimología , Leuconostoc/genética , Manitol Deshidrogenasas/genética , Manitol Deshidrogenasas/metabolismo , Mutación , Mycobacterium/genética , Mycobacterium/metabolismo , NAD/metabolismo , Oxidación-Reducción , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Zymomonas/genética , Zymomonas/metabolismo
7.
Biotechnol J ; 1(5): 556-63, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16892291

RESUMEN

Gluconobacter oxydans DSM 2343 (ATCC 621H)catalyzes the oxidation of glucose to gluconic acid and subsequently to 5-keto-D-gluconic acid (5-KGA), a precursor of the industrially important L-(+)-tartaric acid. To further increase 5-KGA production in G. oxydans, the mutant strain MF1 was used. In this strain the membrane-bound gluconate-2-dehydrogenase activity, responsible for formation of the undesired by-product 2-keto-D-gluconic acid, is disrupted. Therefore, high amounts of 5-KGA accumulate in the culture medium. G. oxydans MF1 was equipped with plasmids allowing the overexpression of the membrane-bound enzymes involved in 5-KGA formation. Overexpression was confirmed on the transcript and enzymatic level. Furthermore, the resulting strains overproducing the membrane-bound glucose dehydrogenase showed an increased gluconic acid formation, whereas the overproduction of gluconate-5-dehydrogenase resulted in an increase in 5-KGA of up to 230 mM. Therefore, these newly developed recombinant strains provide a basis for further improving the biotransformation process for 5-KGA production.


Asunto(s)
Deshidrogenasas de Carbohidratos/metabolismo , Membrana Celular/metabolismo , Mejoramiento Genético/métodos , Gluconatos/metabolismo , Gluconobacter oxydans/metabolismo , Glucosa/metabolismo , Deshidrogenasas de Carbohidratos/genética , Gluconobacter oxydans/genética , Oxidación-Reducción , Ingeniería de Proteínas/métodos
8.
Appl Microbiol Biotechnol ; 73(2): 443-51, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16820953

RESUMEN

Gluconobacter oxydans DSM 2343 is known to catalyze the oxidation of glucose to gluconic acid, and subsequently, to 2-keto-D-gluconic acid (2-KGA) and 5-keto-D-gluconic acid (5-KGA), by membrane-bound and soluble dehydrogenases. In G. oxydans MF1, in which the membrane-bound gluconate-2-dehydrogenase complex was inactivated, formation of the undesired 2-KGA was absent. This mutant strain uniquely accumulates high amounts of 5-KGA in the culture medium. To increase the production rate of 5-KGA, which can be converted to industrially important L-(+)-tartaric acid, we equipped G. oxydans MF1 with plasmids allowing the overproduction of the soluble and the membrane-bound 5-KGA-forming enzyme. Whereas the overproduction of the soluble gluconate:NADP 5-oxidoreductase resulted in the accumulation of up to 200 mM 5-KGA, the detected 5-KGA accumulation was even higher when the gene coding for the membrane-bound gluconate-5-dehydrogenase was overexpressed (240 to 295 mM 5-KGA). These results provide a basis for designing a biotransformation process for the conversion of glucose to 5-KGA using the membrane-bound as well as the soluble enzyme system.


Asunto(s)
Proteínas Bacterianas/fisiología , Biotecnología/métodos , Gluconatos/química , Gluconobacter oxydans/enzimología , Oxidorreductasas/fisiología , Acetatos/química , Proteínas Bacterianas/química , Carbono/química , Fermentación , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Gluconatos/metabolismo , Glucosa/metabolismo , Concentración de Iones de Hidrógeno , Oxidorreductasas/química , Oxígeno/química , Oxígeno/metabolismo , Plásmidos/metabolismo , Tartratos/química , Factores de Tiempo
9.
J Biotechnol ; 124(1): 196-205, 2006 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-16516325

RESUMEN

L-Ascorbic acid has been industrially produced for around 70 years. Over the past two decades, several innovative bioconversion systems have been proposed in order to simplify the long time market-dominating Reichstein method, a largely chemical synthesis by which still a considerable part of L-ascorbic acid is produced. Here, we describe the current state of biotechnological alternatives using bacteria, yeasts, and microalgae. We also discuss the potential for direct production of l-ascorbic acid exploiting novel bacterial pathways. The advantages of these novel approaches competing with current chemical and biotechnological processes are outlined.


Asunto(s)
Ácido Ascórbico/biosíntesis , Bacterias/metabolismo , Biotecnología/métodos , Ingeniería Genética/métodos , Bacterias/genética , Catálisis , Eucariontes/genética , Eucariontes/metabolismo , Fermentación , Técnicas In Vitro , Levaduras/genética , Levaduras/metabolismo
10.
Appl Microbiol Biotechnol ; 69(4): 397-403, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15841369

RESUMEN

Recently, we reported on the construction of a whole-cell biotransformation system in Escherichia coli for the production of D: -mannitol from D: -fructose. Supplementation of this strain with extracellular glucose isomerase resulted in the formation of 800 mM D: -mannitol from 1,000 mM D: -glucose. Co-expression of the xylA gene of E. coli in the biotransformation strain resulted in a D: -mannitol concentration of 420 mM from 1,000 mM D: -glucose. This is the first example of conversion of D: -glucose to D: -mannitol with direct coupling of a glucose isomerase to the biotransformation system.


Asunto(s)
Isomerasas Aldosa-Cetosa/genética , Escherichia coli/metabolismo , Glucosa/metabolismo , Manitol/metabolismo , Proteínas Recombinantes/metabolismo , Recombinación Genética , Isomerasas Aldosa-Cetosa/metabolismo , Biotecnología , ADN Bacteriano/genética , Escherichia coli/citología , Escherichia coli/genética , Formiato Deshidrogenasas/genética , Formiato Deshidrogenasas/metabolismo , Ingeniería Genética/métodos , Manitol Deshidrogenasas/genética , Manitol Deshidrogenasas/metabolismo , Proteínas Recombinantes/genética
11.
Appl Microbiol Biotechnol ; 66(6): 629-34, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15549291

RESUMEN

A whole-cell biotransformation system for the reduction of prochiral carbonyl compounds, such as methyl acetoacetate, to chiral hydroxy acid derivatives [methyl (R)-3-hydroxy butanoate] was developed in Escherichia coli by construction of a recombinant oxidation/reduction cycle. Alcohol dehydrogenase from Lactobacillus brevis catalyzes a highly regioselective and enantioselective reduction of several ketones or keto acid derivatives to chiral alcohols or hydroxy acid esters. The adh gene encoding for the alcohol dehydrogenase of L. brevis was expressed in E. coli. As expected, whole cells of the recombinant strain produced only low quantities of methyl (R)-3-hydroxy butanoate from the substrate methyl acetoacetate. Therefore, the fdh gene from Mycobacterium vaccae N10, encoding NAD+-dependent formate dehydrogenase, was functionally coexpressed. The resulting two-fold recombinant strain exhibited an in vitro catalytic alcohol dehydrogenase activity of 6.5 units mg-1 protein in reducing methyl acetoacetate to methyl (R)-3-hydroxy butanoate with NADPH as the cofactor and 0.7 units mg-1 protein with NADH. The in vitro formate dehydrogenase activity was 1.3 units mg-1 protein. Whole resting cells of this strain catalyzed the formation of 40 mM methyl (R)-3-hydroxy butanoate from methyl acetoacetate. The product yield was 100 mol% at a productivity of 200 micromol g-1 (cell dry weight) min-1. In the presence of formate, the intracellular [NADH]/[NAD+] ratio of the cells increased seven-fold. Thus, the functional overexpression of alcohol dehydrogenase in the presence of formate dehydrogenase was sufficient to enable and sustain the desired reduction reaction via the relatively low specific activity of alcohol dehydrogenase with NADH, instead of NADPH, as a cofactor.


Asunto(s)
Acetoacetatos/metabolismo , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Escherichia coli/metabolismo , Formiato Deshidrogenasas/genética , Formiato Deshidrogenasas/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Biotransformación , Coenzimas/farmacología , Escherichia coli/enzimología , Escherichia coli/genética , Lactobacillus/enzimología , Lactobacillus/genética , Mycobacterium/enzimología , Mycobacterium/genética , Compuestos Orgánicos/metabolismo , Oxidación-Reducción , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Especificidad por Sustrato
12.
Biochim Biophys Acta ; 1698(1): 37-44, 2004 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-15063313

RESUMEN

1-Deoxy-d-xylulose-5-phosphate reductoisomerase (DXR) is the second enzyme in the non-mevalonate pathway of isoprenoid biosynthesis. The structure of the apo-form of this enzyme from Zymomonas mobilis has been solved and refined to 1.9-A resolution, and that of a binary complex with the co-substrate NADPH to 2.7-A resolution. The subunit of DXR consists of three domains. Residues 1-150 form the NADPH binding domain, which is a variant of the typical dinucleotide-binding fold. The second domain comprises a four-stranded mixed beta-sheet, with three helices flanking the sheet. Most of the putative active site residues are located on this domain. The C-terminal domain (residues 300-386) folds into a four-helix bundle. In solution and in the crystal, the enzyme forms a homo-dimer. The interface between the two monomers is formed predominantly by extension of the sheet in the second domain. The adenosine phosphate moiety of NADPH binds to the nucleotide-binding fold in the canonical way. The adenine ring interacts with the loop after beta1 and with the loops between alpha2 and beta2 and alpha5 and beta5. The nicotinamide ring is disordered in crystals of this binary complex. Comparisons to Escherichia coli DXR show that the two enzymes are very similar in structure, and that the active site architecture is highly conserved. However, there are differences in the recognition of the adenine ring of NADPH in the two enzymes.


Asunto(s)
Isomerasas Aldosa-Cetosa/química , Complejos Multienzimáticos/química , Oxidorreductasas/química , Zymomonas/química , Isomerasas Aldosa-Cetosa/metabolismo , Secuencia de Aminoácidos , Apoenzimas/química , Sitios de Unión , Cristalografía por Rayos X , Escherichia coli/química , Escherichia coli/enzimología , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multienzimáticos/metabolismo , NADP/química , NADP/metabolismo , Oxidorreductasas/metabolismo , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Zymomonas/enzimología
13.
Arch Microbiol ; 179(2): 101-7, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12560988

RESUMEN

Mannitol-2-dehydrogenase (EC 1.1.1.67) of Leuconostoc pseudomesenteroides ATCC 12291 catalyzing the NADH-dependent reduction of d-fructose to d-mannitol was purified to homogeneity. Native mannitol-2-dehydrogenase has a molecular mass of 155 kDa as determined by gel filtration chromatography. In SDS-PAGE, a single band appeared corresponding to a molecular mass of 43 kDa which indicated that the enzyme was composed of four identical subunits. Enzyme activity was completely inhibited by EDTA and could be restored by zinc ions, but not by Mn(2+) or Mg(2+) which demonstrated that zinc is a cofactor. Purified mannitol-2-dehydrogenase exhibited a maximal specific activity of 400 micromol fructose reduced min(-1) x (mg protein)(-1), using NADH as electron donor. The enzyme showed a high substrate specificity for d-fructose and d-mannitol, however it accepted NADPH as a cofactor with 32% activity ( V(max)) relative to NADPH (100%). The mdh gene, encoding mannitol-2-dehydrogenase, was identified by hybridization with a degenerate gene probe complementary to the nucleotide sequence encoding the first eight N-terminal amino acids of the enzyme. The mdh gene was cloned on a 4.2-kb DNA fragment, subcloned, and expressed in Escherichia coli. Sequencing of the gene revealed an open reading frame of 1017 bp, encoding a protein of 338 amino acids with a predicted molecular mass of 36.0 kDa. Plasmid-encoded mdh was functionally expressed, with 70 U/mg of cell-free protein in E. coli. Multiple sequence alignments showed that mannitol-2-dehydrogenase was affiliated with members of the Zn(2+)-containing medium-chain alcohol/polyol dehydrogenase/reductase protein family (MDR).


Asunto(s)
Leuconostoc/enzimología , Manitol Deshidrogenasas/química , Manitol Deshidrogenasas/genética , Zinc/análisis , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Clonación Molecular , Electroforesis en Gel de Poliacrilamida/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Genes Bacterianos , Manitol Deshidrogenasas/aislamiento & purificación , Manitol Deshidrogenasas/metabolismo , Datos de Secuencia Molecular , Alineación de Secuencia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA