Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Pharm ; 20(12): 6358-6367, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37961914

RESUMEN

Understanding protein dynamics and conformational stability holds great significance in biopharmaceutical research. Hydrogen-deuterium exchange (HDX) is a quantitative methodology used to examine these fundamental properties of proteins. HDX involves measuring the exchange of solvent-accessible hydrogens with deuterium, which yields valuable insights into conformational fluctuations and conformational stability. While mass spectrometry is commonly used to measure HDX on the peptide level, we explore a different approach using small-angle neutron scattering (SANS). In this work, SANS is demonstrated as a complementary and noninvasive HDX method (HDX-SANS). By assessing subtle changes in the tertiary and quaternary structure during the exchange process in deuterated buffer, along with the influence of added electrolytes on protein stability, SANS is validated as a complementary HDX technique. The HDX of a model therapeutic antibody, NISTmAb, an IgG1κ, is monitored by HDX-SANS over many hours using several different formulations, including salts from the Hofmeister series of anions, such as sodium perchlorate, sodium thiocyanate, and sodium sulfate. The impact of these formulation conditions on the thermal stability of NISTmAb is probed by differential scanning calorimetry. The more destabilizing salts led to heightened conformational dynamics in mAb solutions even at temperatures significantly below the denaturation point. HDX-SANS is demonstrated as a sensitive and noninvasive technique for quantifying HDX kinetics directly in mAb solution, providing novel information about mAb conformational fluctuations. Therefore, HDX-SANS holds promise as a potential tool for assessing protein stability in formulation.


Asunto(s)
Medición de Intercambio de Deuterio , Hidrógeno , Hidrógeno/química , Deuterio/química , Dispersión del Ángulo Pequeño , Medición de Intercambio de Deuterio/métodos , Conformación Proteica , Sales (Química)
2.
Biomol NMR Assign ; 17(1): 75-81, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36856943

RESUMEN

The monoclonal antibody (mAb) protein class has become a primary therapeutic platform for the production of new life saving drug products. MAbs are comprised of two domains: the antigen-binding fragment (Fab) and crystallizable fragment (Fc). Despite the success in the clinic, NMR assignments of the complete Fab domain have been elusive, in part due to problems in production of properly folded, triply-labeled 2H,13C,15N Fab domain. Here, we report the successful recombinant expression of a triply-labeled Fab domain, derived from the standard IgG1κ known as NISTmAb, in yeast. Using the 2H,13C,15N Fab domain, we assigned 94% of the 1H, 13C, and 15N backbone atoms.


Asunto(s)
Fragmentos Fab de Inmunoglobulinas , Saccharomyces cerevisiae , Fragmentos Fab de Inmunoglobulinas/química , Resonancia Magnética Nuclear Biomolecular , Anticuerpos Monoclonales/química , Espectroscopía de Resonancia Magnética
3.
MAbs ; 15(1): 2160227, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36683157

RESUMEN

The clinical efficacy and safety of protein-based drugs such as monoclonal antibodies (mAbs) rely on the integrity of the protein higher order structure (HOS) during product development, manufacturing, storage, and patient administration. As mAb-based drugs are becoming more prevalent in the treatment of many illnesses, the need to establish metrics for quality attributes of mAb therapeutics through high-resolution techniques is also becoming evident. To this end, here we used a forced degradation method, time-dependent oxidation by hydrogen peroxide, on the model biotherapeutic NISTmAb and evaluated the effects on HOS with orthogonal analytical methods and a functional assay. To monitor the oxidation process, the experimental workflow involved incubation of NISTmAb with hydrogen peroxide in a benchtop nuclear magnetic resonance spectrometer (NMR) that followed the reaction kinetics, in real-time through the water proton transverse relaxation rate R2(1H2O). Aliquots taken at defined time points were further analyzed by high-field 2D 1H-13C methyl correlation fingerprint spectra in parallel with other analytical techniques, including thermal unfolding, size-exclusion chromatography, and surface plasmon resonance, to assess changes in stability, heterogeneity, and binding affinities. The complementary measurement outputs from the different techniques demonstrate the utility of combining NMR with other analytical tools to monitor oxidation kinetics and extract the resulting structural changes in mAbs that are functionally relevant, allowing rigorous assessment of HOS attributes relevant to the efficacy and safety of mAb-based drug products.


Asunto(s)
Anticuerpos Monoclonales , Peróxido de Hidrógeno , Humanos , Anticuerpos Monoclonales/química , Espectroscopía de Resonancia Magnética , Resonancia por Plasmón de Superficie
4.
Pharm Res ; 40(6): 1373-1382, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36195820

RESUMEN

PURPOSE: Antisense oligonucleotide (ASO) therapeutics are an emerging class of biopharmaceuticals to treat and prevent diseases, particularly those involving "undruggable" protein targets. Impurities generated throughout the ASO drug manufacturing and formulation pipeline can be detrimental to drug safety and efficacy. Therefore, analytical techniques are needed to rigorously characterize these molecules for quality assurance purposes. METHODS: We demonstrate 1D and 2D nuclear magnetic resonance (NMR) spectroscopy methods that can generate high-resolution structural "fingerprints" of ASOs. RESULTS AND CONCLUSIONS: 1D 1H and 31P measurements are shown to provide rapid initial assessment of the ASO integrity. In particular, a well-resolved pair of 31P signals arising from the 5´-end of the phosphorodiamidate morpholino oligomer (PMO) are sensitive to complex formation and oligomerization state. 2D 1H-1H, 1H-13C, and 1H-15 N experiments, although less sensitive, are further shown to enable resonance assignment, which will allow the tracking of structural changes at high-resolution during the drug development and manufacturing processes. We further anticipate that the described NMR approaches will be broadly applicable to fully formulated ASO therapeutics, including modalities other than PMOs.


Asunto(s)
Factores Biológicos , Oligonucleótidos Antisentido , Espectroscopía de Resonancia Magnética , Morfolinos
5.
Front Mol Biosci ; 9: 876780, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35601836

RESUMEN

Biopharmaceuticals such as monoclonal antibodies are required to be rigorously characterized using a wide range of analytical methods. Various material properties must be characterized and well controlled to assure that clinically relevant features and critical quality attributes are maintained. A thorough understanding of analytical method performance metrics, particularly emerging methods designed to address measurement gaps, is required to assure methods are appropriate for their intended use in assuring drug safety, stability, and functional activity. To this end, a series of interlaboratory studies have been conducted using NISTmAb, a biopharmaceutical-representative and publicly available monoclonal antibody test material, to report on state-of-the-art method performance, harmonize best practices, and inform on potential gaps in the analytical measurement infrastructure. Reported here is a summary of the study designs, results, and future perspectives revealed from these interlaboratory studies which focused on primary structure, post-translational modifications, and higher order structure measurements currently employed during biopharmaceutical development.

6.
Nucleic Acid Ther ; 32(4): 267-279, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35263184

RESUMEN

Nucleic acids are an increasingly popular platform for the development of biotherapeutics to treat a wide variety of illnesses, including diseases where traditional drug development efforts have failed. To date, there are 14 short oligonucleotide therapeutics and 2 messenger RNA (mRNA) vaccines approved by the U.S. Food and Drug Administration (FDA), which demonstrates the potential of nucleic acids as a platform for the development of safe and effective medicines and vaccines. Despite the increasing popularity of nucleic acid-based drugs, there has been a paucity of high-resolution structural techniques applied to rigorously characterize these molecules during drug development. Here, we present application of nuclear magnetic resonance (NMR) methods to structurally "fingerprint" short oligonucleotide therapeutics at natural isotope abundance under full formulation conditions. The NMR methods described herein leverage signals arising from the native structural features of nucleic acids, including imino, aromatic, and ribose resonances, in addition to non-native chemistries, such as 2'-fluoro (2'-F), 2'-O-methyl (2'-OMe), and phosphorothioate (PS) modifications, introduced during drug development. We demonstrate the utility of the NMR methods to structurally "fingerprint" a model short interfering RNA (siRNA) and a sample that simulated the drug product Givosiran. We anticipate broad applicability of the NMR methods to other nucleic acid-based therapeutics due to the generalized nature of the approach and ability to monitor many quality attributes simultaneously.


Asunto(s)
Oligonucleótidos , Espectroscopía de Resonancia Magnética , Oligonucleótidos/uso terapéutico , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética
7.
Nucleic Acids Res ; 50(2): 1017-1032, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34908151

RESUMEN

The ongoing COVID-19 pandemic highlights the necessity for a more fundamental understanding of the coronavirus life cycle. The causative agent of the disease, SARS-CoV-2, is being studied extensively from a structural standpoint in order to gain insight into key molecular mechanisms required for its survival. Contained within the untranslated regions of the SARS-CoV-2 genome are various conserved stem-loop elements that are believed to function in RNA replication, viral protein translation, and discontinuous transcription. While the majority of these regions are variable in sequence, a 41-nucleotide s2m element within the genome 3' untranslated region is highly conserved among coronaviruses and three other viral families. In this study, we demonstrate that the SARS-CoV-2 s2m element dimerizes by forming an intermediate homodimeric kissing complex structure that is subsequently converted to a thermodynamically stable duplex conformation. This process is aided by the viral nucleocapsid protein, potentially indicating a role in mediating genome dimerization. Furthermore, we demonstrate that the s2m element interacts with multiple copies of host cellular microRNA (miRNA) 1307-3p. Taken together, our results highlight the potential significance of the dimer structures formed by the s2m element in key biological processes and implicate the motif as a possible therapeutic drug target for COVID-19 and other coronavirus-related diseases.


Asunto(s)
Regiones no Traducidas 3'/genética , COVID-19/genética , MicroARNs/genética , Motivos de Nucleótidos/genética , ARN Viral/genética , SARS-CoV-2/genética , Secuencia de Bases , Sitios de Unión/genética , COVID-19/metabolismo , COVID-19/virología , Secuencia Conservada/genética , Dimerización , Genoma Viral/genética , Interacciones Huésped-Patógeno/genética , Humanos , MicroARNs/metabolismo , Conformación de Ácido Nucleico , Espectroscopía de Protones por Resonancia Magnética/métodos , ARN Viral/química , ARN Viral/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología
9.
Molecules ; 26(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34885673

RESUMEN

Nuclear magnetic resonance spectroscopy (NMR) is known to be a powerful technique for the characterization of small molecules and structural and dynamics studies of biomolecules [...].

10.
Pharm Res ; 38(1): 3-7, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33555493

RESUMEN

Biologics are complex pharmaceuticals that include formulated proteins, plasma products, vaccines, cell and gene therapy products, and biological tissues. These products are fragile and typically require cold chain for their delivery and storage. Delivering biologics, while maintaining the cold chain, whether standard (2°C to 8°C) or deepfreeze (as cold as -70°C), requires extensive infrastructure that is expensive to build and maintain. This poses a huge challenge to equitable healthcare delivery, especially during a global pandemic. Even when the infrastructure is in place, breaches of the cold chain are common. Such breaches may damage the product, making therapeutics and vaccines ineffective or even harmful. Rather than strengthening the cold chain through building more infrastructure and imposing more stringent guidelines, we suggest that money and effort are best spent on making the cold chain unnecessary for biologics delivery and storage. To meet this grand challenge in pharmaceutical research, we highlight areas where innovations are needed in the design, formulation and biomanufacturing of biologics, including point-of-care manufacturing and inspection. These technological innovations would rely on fundamental advances in our understanding of biomolecules and cells.


Asunto(s)
Productos Biológicos/normas , COVID-19/terapia , Investigación Farmacéutica/normas , Refrigeración/normas , Productos Biológicos/uso terapéutico , COVID-19/epidemiología , Humanos , Investigación Farmacéutica/tendencias , Refrigeración/tendencias , Vacunas/normas , Vacunas/uso terapéutico
11.
J Mol Biol ; 433(2): 166714, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33220264

RESUMEN

We determined the crystal structure to 1.8 Å resolution of the Fab fragment of an affinity-matured human monoclonal antibody (HC84.26.5D) that recognizes the E2 envelope glycoprotein of hepatitis C virus (HCV). Unlike conventional Fabs, which are monovalent monomers, Fab HC84.26.5D assembles into a bivalent domain-swapped dimer in which the two VL/VH modules are separated by ~25 Å. In solution, Fab HC84.26.5D exists predominantly as a dimer (~80%) in equilibrium with the monomeric form of the Fab (~20%). Dimerization is mediated entirely by deletion of a single residue, VHSer113 (Kabat numbering), in the elbow region linking the VH and CH1 domains. In agreement with the crystal structure, dimeric Fab HC84.26.5D is able to bind two HCV E2 molecules in solution. This is only the second example of a domain-swapped Fab dimer from among >3000 Fab crystal structures determined to date. Moreover, the architecture of the doughnut-shaped Fab HC84.26.5D dimer is completely different from that of the previously reported Fab 2G12 dimer. We demonstrate that the highly identifiable shape of dimeric Fab HC84.26.5D makes it useful as a fiducial marker for single-particle cryoEM analysis of HCV E2. Bivalent domain-swapped Fab dimers engineered on the basis of HC84.26.5D may also serve as a means of doubling the effective size of conventional Fab-protein complexes for cryoEM.


Asunto(s)
Anticuerpos Biespecíficos/química , Fragmentos Fab de Inmunoglobulinas/química , Modelos Moleculares , Conformación Proteica , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Anticuerpos Biespecíficos/genética , Afinidad de Anticuerpos , Microscopía por Crioelectrón , Cristalografía por Rayos X , Fragmentos Fab de Inmunoglobulinas/genética , Mutación , Multimerización de Proteína , Proteínas Recombinantes , Análisis Espectral , Relación Estructura-Actividad , Termodinámica
12.
J Biomol NMR ; 74(10-11): 643-656, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32700053

RESUMEN

Protein therapeutics have numerous critical quality attributes (CQA) that must be evaluated to ensure safety and efficacy, including the requirement to adopt and retain the correct three-dimensional fold without forming unintended aggregates. Therefore, the ability to monitor protein higher order structure (HOS) can be valuable throughout the lifecycle of a protein therapeutic, from development to manufacture. 2D NMR has been introduced as a robust and precise tool to assess the HOS of a protein biotherapeutic. A common use case is to decide whether two groups of spectra are substantially different, as an indicator of difference in HOS. We demonstrate a quantitative use of principal component analysis (PCA) scores to perform this decision-making, and demonstrate the effect of acquisition and processing details on class separation using samples of NISTmAb monoclonal antibody Reference Material subjected to two different oxidative stress protocols. The work introduces an approach to computing similarity from PCA scores based upon the technique of histogram intersection, a method originally developed for retrieval of images from large databases. Results show that class separation can be robust with respect to random noise, reconstruction method, and analysis region selection. By contrast, details such as baseline distortion can have a pronounced effect, and so must be controlled carefully. Since the classification approach can be performed without the need to identify peaks, results suggest that it is possible to use even more efficient measurement strategies that do not produce spectra that can be analyzed visually, but nevertheless allow useful decision-making that is objective and automated.


Asunto(s)
Anticuerpos Monoclonales/química , Automatización/métodos , Resonancia Magnética Nuclear Biomolecular/métodos , Análisis de Componente Principal/métodos , Productos Biológicos , Análisis de Fourier , Espectroscopía de Resonancia Magnética/métodos
13.
Curr Protoc Protein Sci ; 100(1): e105, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32407007

RESUMEN

Characterization of the higher-order structure (HOS) of protein therapeutics, and in particular of monoclonal antibodies, by 2D 1 H-13 C methyl correlated NMR has been demonstrated as precise and robust. Such characterization can be greatly enhanced when collections of spectra are analyzed using multivariate approaches such as principal component analysis (PCA), allowing for the detection and identification of small structural differences in drug substance that may otherwise fall below the limit of detection of conventional spectral analysis. A major limitation to this approach is the presence of aliphatic signals from formulation or excipient components, which result in spectral interference with the protein signal of interest; however, the recently described Selective Excipient Reduction and Removal (SIERRA) filter greatly reduces this issue. Here we will outline how basic 2D 1 H-13 C methyl-correlated NMR may be combined with the SIERRA approach to collect 'clean' NMR spectra of formulated monoclonal antibody therapeutics (i.e., drug substance spectra free of interfering component signals), and how series of such spectra may be used for HOS characterization by direct PCA of the series spectral matrix. © 2020 U.S. Government. Basic Protocol 1: NMR data acquisition Basic Protocol 2: Full spectral matrix data processing and analysis Support Protocol: Data visualization and cluster analysis.


Asunto(s)
Anticuerpos Monoclonales de Origen Murino/química , Resonancia Magnética Nuclear Biomolecular , Anticuerpos Monoclonales de Origen Murino/análisis , Anticuerpos Monoclonales de Origen Murino/uso terapéutico , Humanos , Análisis de Componente Principal
14.
J Chem Inf Model ; 60(4): 2339-2355, 2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32249579

RESUMEN

Quality attributes (QAs) are measureable parameters of a biologic that impact product safety and efficacy and are essential characteristics that are linked to positive patient health outcomes. One QA, higher order structure (HOS), is directly coupled to the function of protein biologics, and deviations in this QA may cause adverse effects. To address the critical need for HOS assessment, methods for analyzing structural fingerprints from 2D nuclear magnetic resonance spectroscopy (2D-NMR) spectra have been established for drug substances as large as monoclonal antibody therapeutics. Here, chemometric analyses have been applied to 2D 1H,13C-methyl NMR correlation spectra of the IgG1κ NIST monoclonal antibody (NISTmAb), recorded at natural isotopic abundance, to benchmark the performance and robustness of the methods. In particular, a variety of possible spectral input schemes (e.g., chemical shift, peak intensity, and total spectral matrix) into chemometric algorithms are examined using two case studies: (1) a large global 2D-NMR interlaboratory study and (2) a blended series of enzymatically glycan-remodeled NISTmAb isoforms. These case studies demonstrate that the performance of chemometric algorithms using either peak positions or total spectral matrix as the input will depend on the study design and likely be product-specific. In general, peak positions are found to be a more robust spectral parameter for input into chemometric algorithms, whereas the total spectral matrix approach lends itself to easier automation and requires less user intervention. Analysis with different input data also shows differences in sensitivity to certain changes in HOS, highlighting that product knowledge will further guide appropriate method selection based on the fit-for-purpose application in the context of biopharmaceutical development, production, and quality control.


Asunto(s)
Productos Biológicos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Algoritmos , Anticuerpos Monoclonales , Humanos
15.
Artículo en Inglés | MEDLINE | ID: mdl-34135539

RESUMEN

Protein therapeutics are vitally important clinically and commercially, with monoclonal antibody (mAb) therapeutic sales alone accounting for $115 billion in revenue for 2018.[1] In order for these therapeutics to be safe and efficacious, their protein components must maintain their high order structure (HOS), which includes retaining their three-dimensional fold and not forming aggregates. As demonstrated in the recent NISTmAb Interlaboratory nuclear magnetic resonance (NMR) Study[2], NMR spectroscopy is a robust and precise approach to address this HOS measurement need. Using the NISTmAb study data, we benchmark a procedure for automated outlier detection used to identify spectra that are not of sufficient quality for further automated analysis. When applied to a diverse collection of all 252 1H,13C gHSQC spectra from the study, a recursive version of the automated procedure performed comparably to visual analysis, and identified three outlier cases that were missed by the human analyst. In total, this method represents a distinct advance in chemometric detection of outliers due to variation in both measurement and sample.

16.
Pharmaceutics ; 11(10)2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31640157

RESUMEN

Antibody-drug conjugates (ADCs) are a class of biotherapeutic drugs designed as targeted therapies for the treatment of cancer. Among the challenges in generating an effective ADC is the choice of an effective conjugation site on the IgG. One common method to prepare site-specific ADCs is to engineer solvent-accessible cysteine residues into antibodies. Here, we used X-ray diffraction and hydrogen-deuterium exchange mass spectroscopy to analyze the structure and dynamics of such a construct where a cysteine has been inserted after Ser 239 (Fc-239i) in the antibody heavy chain sequence. The crystal structure of this Fc-C239i variant at 0.23 nm resolution shows that the inserted cysteine structurally replaces Ser 239 and that this causes a domino-like backward shift of the local polypeptide, pushing Pro 238 out into the hinge. Proline is unable to substitute conformationally for the wild-type glycine at this position, providing a structural reason for the previously observed abolition of both FcγR binding and antibody-dependent cellular cytotoxicity. Energy estimates for the both the FcγR interface (7 kcal/mol) and for the differential conformation of proline (20 kcal/mol) are consistent with the observed disruption of FcγR binding, providing a quantifiable case where strain at a single residue appears to disrupt a key biological function. Conversely, the structure of Fc-C239i is relatively unchanged at the intersection of the CH2 and CH3 domains; the site known to be involved in binding of the neonatal Fc receptor (FcRn), and an alignment of the Fc-C239i structure with an Fc structure in a ternary Fc:FcRn:HSA (human serum albumin) complex implies that these favorable contacts would be maintained. Hydrogen deuterium exchange mass spectroscopy (HDX-MS) data further suggest a significant increase in conformational mobility for the Fc-C239i protein relative to Fc that is evident even far from the insertion site but still largely confined to the CH2 domain. Together, the findings provide a detailed structural and dynamic basis for previously observed changes in ADC functional binding to FcγR, which may guide further development of ADC designs.

17.
J Biol Chem ; 294(48): 18046-18056, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31604819

RESUMEN

Monoclonal antibodies (mAbs) represent an important platform for the development of biotherapeutic products. Most mAbs are produced in mammalian cells, but several mAbs are made in Escherichia coli, including therapeutic fragments. The NISTmAb is a well-characterized reference material made widely available to facilitate the development of both originator biologics and biosimilars. Here, when expressing NISTmAb from codon-optimized constructs in E. coli (eNISTmAb), a truncated variant of its heavy chain was observed. N-terminal protein sequencing and mutagenesis analyses indicated that the truncation resulted from an internal translation initiation from a GTG codon (encoding Val) within eNISTmAb. Using computational and biochemical approaches, we demonstrate that this translation initiates from a weak Shine-Dalgarno sequence and is facilitated by a putative ribosomal protein S1-binding site. We also observed similar internal initiation in the mAb adalimumab (the amino acid sequence of the drug Humira) when expressed in E. coli Of note, these internal initiation regions were likely an unintended result of the codon optimization for E. coli expression, and the amino acid pattern from which it is derived was identified as a Pro-Ser-X-X-X-Val motif. We discuss the implications of our findings for E. coli protein expression and codon optimization and outline possible strategies for reducing the likelihood of internal translation initiation and truncated product formation.


Asunto(s)
Adalimumab , Escherichia coli , Cadenas Pesadas de Inmunoglobulina , Iniciación de la Cadena Peptídica Traduccional , Adalimumab/biosíntesis , Adalimumab/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Cadenas Pesadas de Inmunoglobulina/biosíntesis , Cadenas Pesadas de Inmunoglobulina/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética
18.
J Magn Reson ; 307: 106581, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31499472

RESUMEN

The higher order structure (HOS) of protein therapeutics is essential for drug safety and efficacy and can be evaluated by two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy at atomic resolution. 1Hn-15N amide correlated and 1H-13C methyl correlated NMR spectroscopies at natural isotopic abundance have been demonstrated as feasible on protein therapeutics as large as monoclonal antibodies and show great promise for use in establishing drug substance structural consistency across manufacturing changes and in comparing a biosimilar to an originator reference product. Spectral fingerprints from 1Hn-1Hα correlations acquired using 2D homonuclear proton-proton J-correlated NMR experiments provide a complementary approach for high-resolution assessment of the HOS of lower molecular weight (<25 kDa) protein therapeutics. Here, we evaluate different pulse sequences (COSY, TOCSY and TACSY) used to generate proton-proton J-correlated NMR spectral fingerprints and appraise the performance of each method for application to protein therapeutic HOS assessment and comparability.


Asunto(s)
Factores Biológicos/uso terapéutico , Resonancia Magnética Nuclear Biomolecular/métodos , Mapeo Peptídico/métodos , Animales , Proteínas del Huevo/química , Indicadores y Reactivos , Espectroscopía de Resonancia Magnética , Muramidasa/química , Protones
19.
Soft Matter ; 15(21): 4284-4293, 2019 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-31094392

RESUMEN

Despite their great promise as fluorescent biological probes and sensors, the structure and dynamics of Ag complexes derived from single stranded DNA (ssDNA) are less understood than their double stranded counterparts. In this work, we seek new insights into the structure of single AgNssDNA clusters using analytical ultracentrifugation (AUC), nuclear magnetic resonance spectroscopy, infrared spectroscopy and molecular dynamics simulations (MD) of a fluorescent (AgNssDNA)8+ nanocluster. The results suggest that the purified (AgNssDNA)8+ nanocluster is a mixture of predominantly Ag15 and Ag16 species that prefer two distinct long-lived conformational states: one extended, the other approaching spherical. However, the ssDNA strands within these clusters are highly mobile. Ag(i) interacts preferentially with the nucleobase rather than the phosphate backbone, causing a restructuring of the DNA strand relative to the bare DNA. Infrared spectroscopy and MD simulations of (AgNssDNA)8+ and model nucleic acid homopolymers suggest that Ag(i) has a higher affinity for cytosine over guanine bases, little interaction with adenine, and virtually none with thymine. Ag(i) shows a tendency to interact with cytosine N3 and O2 and guanine N7 and O6, opening the possibility for a Ag(i)-base bifurcated bond to act as a nanocluster nucleation and strand stabilizing site. This work provides valuable insight into nanocluster structure and dynamics which drive stability and optical properties, and additional studies using these types of characterization techniques are important for the rational design of single stranded AgDNA nanocluster sensors.


Asunto(s)
ADN de Cadena Simple/química , Plata/química , Secuencia de Bases , ADN de Cadena Simple/genética , Conformación Molecular , Simulación de Dinámica Molecular
20.
MAbs ; 11(1): 94-105, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30570405

RESUMEN

The increased interest in using monoclonal antibodies (mAbs) as a platform for biopharmaceuticals has led to the need for new analytical techniques that can precisely assess physicochemical properties of these large and very complex drugs for the purpose of correctly identifying quality attributes (QA). One QA, higher order structure (HOS), is unique to biopharmaceuticals and essential for establishing consistency in biopharmaceutical manufacturing, detecting process-related variations from manufacturing changes and establishing comparability between biologic products. To address this measurement challenge, two-dimensional nuclear magnetic resonance spectroscopy (2D-NMR) methods were introduced that allow for the precise atomic-level comparison of the HOS between two proteins, including mAbs. Here, an inter-laboratory comparison involving 26 industrial, government and academic laboratories worldwide was performed as a benchmark using the NISTmAb, from the National Institute of Standards and Technology (NIST), to facilitate the translation of the 2D-NMR method into routine use for biopharmaceutical product development. Two-dimensional 1H,15N and 1H,13C NMR spectra were acquired with harmonized experimental protocols on the unlabeled Fab domain and a uniformly enriched-15N, 20%-13C-enriched system suitability sample derived from the NISTmAb. Chemometric analyses from over 400 spectral maps acquired on 39 different NMR spectrometers ranging from 500 MHz to 900 MHz demonstrate spectral fingerprints that are fit-for-purpose for the assessment of HOS. The 2D-NMR method is shown to provide the measurement reliability needed to move the technique from an emerging technology to a harmonized, routine measurement that can be generally applied with great confidence to high precision assessments of the HOS of mAb-based biotherapeutics.


Asunto(s)
Anticuerpos Monoclonales/química , Biofarmacia/normas , Laboratorios/normas , Espectroscopía de Resonancia Magnética/métodos , Humanos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...