Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomed Mater Res A ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769626

RESUMEN

Wound infection and excessive blood loss are the two major challenges associated with trauma injuries that account for 10% of annual deaths in the United States. Nitric oxide (NO) is a gasotransmitter cell signaling molecule that plays a crucial role in the natural wound healing process due to its antibacterial, anti-inflammatory, cell proliferation, and tissue remodeling abilities. Tranexamic acid (TXA), a prothrombotic agent, has been used topically and systemically to control blood loss in reported cases of epistaxis and combat-related trauma injuries. Its properties could be incorporated in wound dressings to induce immediate clot formation, which is a key factor in controlling excessive blood loss. This study introduces a novel, instant clot-forming NO-releasing dressing, and fabricated using a strategic bi-layer configuration. The layer adjacent to the wound was designed with TXA suspended on a resinous bed of propolis, which is a natural bioadhesive possessing antibacterial and anti-inflammatory properties. The base layer, located furthest away from the wound, has an NO donor, S-nitroso-N-acetylpenicillamine (SNAP), embedded in a polymeric bed of Carbosil®, a copolymer of polycarbonate urethane and silicone. Propolis was integrated with a uniform layer of TXA in variable concentrations: 2.5, 5.0, and 7.5 vol % of propolis. This design of the TXA-SNAP-propolis (T-SP) wound dressing allows TXA to form a more stable clot by preventing the lysis of fibrin. The lactate dehydrogenase-based platelet adhesion assay showed an increase in fibrin activation with 7.5% T-SP as compared with control within the first 15 min of its application. A scanning electron microscope (SEM) confirmed the presence of a dense fibrin network stabilizing the clot for fabricated dressing. The antibacterial activity of NO and propolis resulted in a 98.9 ± 1% and 99.4 ± 1% reduction in the colony-forming unit of Staphylococcus aureus and multidrug-resistant Acinetobacter baumannii, respectively, which puts forward the fabricated dressing as an emergency first aid for traumatic injuries, preventing excessive blood loss and soil-borne infections.

2.
ACS Appl Mater Interfaces ; 16(19): 24248-24260, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38693878

RESUMEN

Biomedical devices are vulnerable to infections and biofilm formation, leading to extended hospital stays, high expenditure, and increased mortality. Infections are clinically treated via the administration of systemic antibiotics, leading to the development of antibiotic resistance. A multimechanistic strategy is needed to design an effective biomaterial with broad-spectrum antibacterial potential. Recent approaches have investigated the fabrication of innately antimicrobial biomedical device surfaces in the hope of making the antibiotic treatment obsolete. Herein, we report a novel fabrication strategy combining antibacterial nitric oxide (NO) with an antibiofilm agent N-acetyl cysteine (NAC) on a polyvinyl chloride surface using polycationic polyethylenimine (PEI) as a linker. The designed biomaterial could release NO for at least 7 days with minimal NO donor leaching under physiological conditions. The proposed surface technology significantly reduced the viability of Gram-negative Escherichia coli (>97%) and Gram-positive Staphylococcus aureus (>99%) bacteria in both adhered and planktonic forms in a 24 h antibacterial assay. The composites also exhibited a significant reduction in biomass and extra polymeric substance accumulation in a dynamic environment over 72 h. Overall, these results indicate that the proposed combination of the NO donor with mucolytic NAC on a polymer surface efficiently resists microbial adhesion and can be used to prevent device-associated biofilm formation.


Asunto(s)
Acetilcisteína , Antibacterianos , Biopelículas , Escherichia coli , Óxido Nítrico , Staphylococcus aureus , Acetilcisteína/química , Acetilcisteína/farmacología , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacología , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Biopelículas/efectos de los fármacos , Polietileneimina/química , Polietileneimina/farmacología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Pruebas de Sensibilidad Microbiana , Cloruro de Polivinilo/química , Donantes de Óxido Nítrico/química , Donantes de Óxido Nítrico/farmacología
3.
ACS Appl Bio Mater ; 7(5): 3086-3095, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38652779

RESUMEN

Of the 27 million surgeries performed in the United States each year, a reported 2.6% result in a surgical site infection (SSI), and Staphylococci species are commonly the culprit. Alternative therapies, such as nitric oxide (NO)-releasing biomaterials, are being developed to address this issue. NO is a potent antimicrobial agent with several modes of action, including oxidative and nitrosative damage, disruption of bacterial membranes, and dispersion of biofilms. For targeted antibacterial effects, NO is delivered by exogenous donor molecules, like S-nitroso-N-acetylpenicillamine (SNAP). Herein, the impregnation of SNAP into poly(lactic-co-glycolic acid) (PLGA) for SSI prevention is reported for the first time. The NO-releasing PLGA copolymer is fabricated and characterized by donor molecule loading, leaching, and the amount remaining after ethylene oxide sterilization. The swelling ratio, water uptake, static water contact angle, and tensile strength are also investigated. Furthermore, its cytocompatibility is tested against 3T3 mouse fibroblast cells, and its antimicrobial efficacy is assessed against multiple Staphylococci strains. Overall, the NO-releasing PLGA copolymer holds promise as a suture material for eradicating surgical site infections caused by Staphylococci strains. SNAP impregnation affords robust antibacterial properties while maintaining the cytocompatibility and mechanical integrity.


Asunto(s)
Antibacterianos , Materiales Biocompatibles , Ensayo de Materiales , Óxido Nítrico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Infección de la Herida Quirúrgica , Suturas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Infección de la Herida Quirúrgica/prevención & control , Infección de la Herida Quirúrgica/tratamiento farmacológico , Infección de la Herida Quirúrgica/microbiología , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Ratones , Antibacterianos/farmacología , Antibacterianos/química , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/prevención & control , Tamaño de la Partícula , Staphylococcus aureus/efectos de los fármacos , Staphylococcus/efectos de los fármacos
4.
ACS Appl Bio Mater ; 7(5): 2993-3004, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38593411

RESUMEN

Bacterial biofilms play a central role in the development and progression of periodontitis, a chronic inflammatory condition that affects the oral cavity. One solution to current treatment constraints is using nitric oxide (NO)─with inherent antimicrobial properties. In this study, an antimicrobial coating is developed from the NO donor S-nitroso-N-acetylpenicillamine (SNAP) embedded within polyethylene glycol (PEG) to prevent periodontitis. The SNAP-PEG coating design enabled a controlled NO release, achieving tunable NO levels for more than 24 h. Testing the SNAP-PEG composite on dental floss showed its effectiveness as a uniform and bioactive coating. The coating exhibited antibacterial properties against Streptococcus mutans and Escherichia coli, with inhibition zones measuring up to 7.50 ± 0.28 and 14.80 ± 0.46 mm2, respectively. Furthermore, SNAP-PEG coating materials were found to be stable when stored at room temperature, with 93.65% of SNAP remaining after 28 d. The coatings were biocompatible against HGF and hFOB 1.19 cells through a 24 h controlled release study. This study presents a facile method to utilize controlled NO release with dental antimicrobial coatings comprising SNAP-PEG. This coating can be easily applied to various substrates, providing a user-friendly approach for targeted self-care in managing gingival infections associated with periodontitis.


Asunto(s)
Antibacterianos , Materiales Biocompatibles Revestidos , Escherichia coli , Ensayo de Materiales , Óxido Nítrico , Streptococcus mutans , Streptococcus mutans/efectos de los fármacos , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Escherichia coli/efectos de los fármacos , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Polietilenglicoles/química , Polietilenglicoles/farmacología , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Biopelículas/efectos de los fármacos , S-Nitroso-N-Acetilpenicilamina/química , S-Nitroso-N-Acetilpenicilamina/farmacología , Propiedades de Superficie , Periodontitis/tratamiento farmacológico , Periodontitis/microbiología , Encía/citología
5.
Mater Adv ; 4(15): 3197-3206, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38013687

RESUMEN

Nitric oxide (NO)-release from polymer metal composites is achieved through the incorporation of NO donors such as S-nitrosothiols (RSNO). Several studies have shown that metal nanoparticles catalytically decompose RSNO to release NO. In polymer composites, the NO surface flux from the surface can be modulated by the application of metal nanoparticles with a varying degree of catalytic activity. In this study, we compare the NO-releasing polymer composite design strategy - demonstrating how different ways of incorporating RSNO and metal nanoparticles can affect NO flux, donor leaching, or biological activity of the films. The first approach included blending both the RSNO and metal nanoparticle in the matrix (non-layered), while the second approach involved dip-coating metal nanoparticle/polymer layer on the RSNO-containing polymer composite (layered). Secondly, we compare both designs with respect to metal nanoparticles, including iron (Fe), copper (Cu), nickel (Ni), zinc (Zn), and silver (Ag). Differential NO surface flux is observed for each metal nanoparticle, with the Cu-containing polymer composites showing the highest flux for layered composites, whereas Fe demonstrated the highest NO flux for non-layered composites in 24 h. Additionally, a comparative study on NO flux modulation via the choice of metal nanoparticles is shown. Furthermore, mouse fibroblast cell viability when exposed to leachates from the polymer metal composites was dependent on (1) the design of the polymer composite where the layered approach performed better than non-layered composites (2) diffusion of metal nanoparticles from the composites plays a key role. Antibacterial activity on methicillin-resistant Staphylococcus aureus was also dependent on individual metal nanoparticles and flux levels in a 24 h in vitro CDC bioreactor study. Therefore, the study establishes the need for a layered polymer metal composite strategy that synergizes NO flux without negatively affecting biocompatibility.

6.
ACS Appl Mater Interfaces ; 15(42): 48930-48944, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37827196

RESUMEN

An increasing number of studies have shown that the local release of nitric oxide (NO) from hydrogels stimulates tissue regeneration by modulating cell proliferation, angiogenesis, and inflammation. The potential biomedical uses of NO-releasing hydrogels can be expanded by enabling their application in a fluid state, followed by controlled gelation triggered by an external factor. In this study, we engineered a hydrogel composed of methacrylated hyaluronic acid (HAGMA) and thiolated gelatin (GELSH) with the capacity for in situ photo-cross-linking, coupled with localized NO release. To ensure a gradual and sustained NO release, we charged the hydrogels with poly(l-lactic-co-glycolic acid) (PLGA) nanoparticles functionalized with S-nitrosoglutathione (GSNO), safeguarding SNO group integrity during photo-cross-linking. The formation of thiol-ene bonds via the reaction between GELSH's thiol groups and HAGMA's vinyl groups substantially accelerated gelation (by a factor of 6) and increased the elastic modulus of hydrated hydrogels (by 1.9-2.4 times). HAGMA/GELSH hydrogels consistently released NO over a 14 day duration, with the release of NO depending on the hydrogels' equilibrium swelling degree, determined by the GELSH-to-HAGMA ratio. Biocompatibility assessments confirmed the suitability of these hydrogels for biological applications as they display low cytotoxicity and stimulated fibroblast adhesion and proliferation. In conclusion, in situ photo-cross-linkable HAGMA/GELSH hydrogels, loaded with PLGA-GSNO nanoparticles, present a promising avenue for achieving localized and sustained NO delivery in tissue regeneration applications.


Asunto(s)
Gelatina , Ácido Hialurónico , Ácido Hialurónico/química , Gelatina/química , Óxido Nítrico , Hidrogeles/farmacología , Hidrogeles/química , Compuestos de Sulfhidrilo/química
7.
Artículo en Inglés | MEDLINE | ID: mdl-37694274

RESUMEN

Hydrogels provide a plethora of advantages to biomedical treatments due to their highly hydrophilic nature and tissue-like mechanical properties. Additionally, the numerous and widespread endogenous roles of nitric oxide have led to an eruption in research developing biomimetic solutions to the many challenges the biomedical world faces. Though many design factors and fabrication details must be considered, utilizing hydrogels as nitric oxide delivery vehicles provides promising materials in several applications. Such applications include cardiovascular therapy, vasodilation and angiogenesis, antimicrobial treatments, wound dressings, and stem cell research. Herein, a recent update on the progress of NO-releasing hydrogels is presented in depth. In addition, considerations for the design and fabrication of hydrogels and specific biomedical applications of nitric oxide-releasing hydrogels are discussed.

8.
Biomater Sci ; 11(19): 6561-6572, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37594048

RESUMEN

Antibiotic lock therapy (ALT) is standard clinical practice for treating bacteremia linked with catheter-related bloodstream infections (CRBSIs). However, this strategy frequently fails against multi-drug-resistant bacteria in clinical settings. In this study, a novel approach to utilize a nitric oxide (NO) donor S-nitroso-N-acetyl-penicillamine (SNAP)-conjugated to ampicillin antibiotic (namely SNAPicillin) as a catheter lock solution is presented. The conjugate of two antimicrobial agents is anticipated to overcome the challenges of bacterial infection caused by antibiotic-resistant bacteria in ALT applications. Nitric oxide release from the SNAPicillin lock solution at varying concentrations was measured at 0 and 24 h time points in a catheter model system, which revealed tunable NO release at physiological levels. The clinical strains of E. coli (CDC AR-0089) and S. marcescens (CDC AR-0099) were screened using a zone of inhibition assay against standard antibiotics which confirmed the antibiotic resistance in bacteria. The minimum inhibitory concentration (MIC) testing of SNAPicillin unveiled the lowest MIC value for SNAPicillin against both E. coli and S. marcescens (1 and 2 mM of SNAPicillin, respectively) with an 8.24- and 4.28-log reduction in bacterial load compared to controls, respectively. In addition, while the ampicillin-treated biofilm demonstrated resistance toward the antibiotic, SNAPicillin led to >99% reduction in exterminating biofilm buildup on polymeric catheter surfaces. Lastly, the SNAPicillin lock solution was determined to be biocompatible via hemolysis and cell compatibility studies. Together, these results emphasize the promising potential of SNAPicillin lock solution with the dual-action of NO and ampicillin in overcoming bacterial challenges on medical devices like central venous catheters and other medical device interfaces.


Asunto(s)
Antiinfecciosos , Infecciones Relacionadas con Catéteres , Humanos , Antibacterianos , Óxido Nítrico , Escherichia coli , Infecciones Relacionadas con Catéteres/tratamiento farmacológico , Infecciones Relacionadas con Catéteres/prevención & control , Infecciones Relacionadas con Catéteres/microbiología , Ampicilina/farmacología , Antiinfecciosos/uso terapéutico , Bacterias , Catéteres , Donantes de Óxido Nítrico
9.
J Biomed Mater Res A ; 111(10): 1627-1641, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37209058

RESUMEN

Infection of indwelling catheters is a common healthcare problem, resulting in higher morbidity and mortality. The vulnerable population reliant on catheters post-surgery for food and fluid intake, blood transfusion, or urinary incontinence or retention is susceptible to hospital-acquired infection originating from the very catheter. Bacterial adhesion on catheters can take place during the insertion or over time when catheters are used for an extended period. Nitric oxide-releasing materials have shown promise in exhibiting antibacterial properties without the risk of antibacterial resistance which can be an issue with conventional antibiotics. In this study, 1, 5, and 10 wt % selenium (Se) and 10 wt % S-nitrosoglutathione (GSNO)-incorporated catheters were prepared through a layer-by-layer dip-coating method to demonstrate NO-releasing and NO-generating capability of the catheters. The presence of Se on the catheter interface resulted in a 5 times higher NO flux in 10% Se-GSNO catheter through catalytic NO generation. A physiological level of NO release was observed from 10% Se-GSNO catheters for 5 d, along with an enhanced NO generation via the catalytic activity as Se was able to increase NO availability. The catheters were also found to be compatible and stable when subjected to sterilization and storage, even at room temperature. Additionally, the catheters showed a 97.02% and 93.24% reduction in the adhesion of clinically relevant strains of Escherichia coli and Staphylococcus aureus, respectively. Cytocompatibility testing of the catheter with 3T3 mouse fibroblast cells supports the material's biocompatibility. These findings from the study establish the proposed catheter as a prospective antibacterial material that can be translated into a clinical setting to combat catheter-related infections.


Asunto(s)
Antiinfecciosos , Biomimética , Ratones , Animales , Estudios Prospectivos , Catéteres , Antibacterianos/farmacología , Escherichia coli
10.
J Colloid Interface Sci ; 640: 144-161, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36842420

RESUMEN

Light-controlled therapies offer a promising strategy to prevent and suppress infections caused by numerous bacterial pathogens. Excitation of exogenously supplied photosensitizers (PS) at specific wavelengths elicits levels of reactive oxygen intermediates toxic to bacteria. Porphyrin-based supramolecular nanostructure frameworks (SNF) are effective PS with unique physicochemical properties that have led to their widespread use in photomedicine. Herein, we developed a nitric oxide (NO) releasing, biocompatible, and stable porphyrin-based SNF (SNF-NO), which was achieved through a confined noncovalent self-assembly process based on π-π stacking. Characterization of the SNFs via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis showed the formation of three-dimensional, well-defined octahedral structures. These SNF-NO were shown to exhibit a red shift due to the noncovalent self-assembly of porphyrins, which also show extended light absorption to broadly cover the entire visible light spectrum to enhance photodynamic therapy (PDT). Under visible light irradiation (46 J cm-2), the SNF generates high yields of singlet oxygen (1O2) radicals, hydroxyl radicals (HO), superoxide radicals (O2), and peroxynitrite (ONOO-) radicals that have shown potential to enhance antimicrobial photodynamic therapy (APDT) against Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and Gram-negative Escherichia coli (E. coli). The resulting SNFs also exhibit significant biofilm dispersion and a decrease in biomass production. The combination of robust photosensitizer SNFs with nitric oxide-releasing capabilities is dynamic in its ability to target pathogenic infections while remaining nontoxic to mammalian cells. The engineered SNFs have enormous potential for treating and managing microbial infections.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Fotoquimioterapia , Porfirinas , Animales , Óxido Nítrico , Escherichia coli , Antibacterianos/farmacología , Antibacterianos/química , Luz , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Porfirinas/farmacología , Porfirinas/química , Mamíferos
11.
J Biomed Mater Res A ; 111(4): 451-464, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36594584

RESUMEN

Graphene oxide (GO) nanosheets are a promising class of carbon-based materials suitable for application in the construction of medical devices. These materials have inherent antimicrobial properties based on sheet size, but these effects must be carefully traded off to maintain biocompatibility. Chemical modification of functional groups to the lattice structure of GO nanosheets enables unique opportunities to introduce new surface properties to bolster biological effects. Herein, we have developed nitric oxide (NO)-releasing GO nanosheets via immobilization of S-nitrosothiol (RSNO) moieties to GO nanosheets (GO-[NH]x -SNO). These novel RSNO-based GO nanosheets were characterized for chemical functionality via Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy, and colorimetric assays for functional group quantification. Stoichiometric control of the available RSNO groups functionalized onto the nanosheets was studied using chemiluminescence-based NO detection methods, showing highly tunable NO release kinetics. Studies of electrical stimulation and subsequent electrochemical reduction of the nanosheets demonstrated further tunability of the NO release based on stimuli. Finally, nanosheets were evaluated for cytotoxicity and antibacterial effects, showing strong cytocompatibility with human fibroblasts in parallel to broad antibacterial and anti-biofilm effects against both Gram-positive and Gram-negative strains. In summary, derivatized GO-(NH)x -SNO nanosheets were shown to have tunable NO release properties, enabling application-specific tailoring for diverse biomedical applications such as antimicrobial coatings and composite fillers for stents, sensors, and other medical devices.


Asunto(s)
Materiales Biocompatibles , Grafito , Humanos , Óxido Nítrico , Grafito/química , Antibacterianos/química
12.
ACS Mater Au ; 2(5): 525-551, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36124001

RESUMEN

Implant-associated infections arising from biofilm development are known to have detrimental effects with compromised quality of life for the patients, implying a progressing issue in healthcare. It has been a struggle for more than 50 years for the biomaterials field to achieve long-term success of medical implants by discouraging bacterial and protein adhesion without adversely affecting the surrounding tissue and cell functions. However, the rate of infections associated with medical devices is continuously escalating because of the intricate nature of bacterial biofilms, antibiotic resistance, and the lack of ability of monofunctional antibacterial materials to prevent the colonization of bacteria on the device surface. For this reason, many current strategies are focused on the development of novel antibacterial surfaces with dual antimicrobial functionality. These surfaces are based on the combination of two components into one system that can eradicate attached bacteria (antibiotics, peptides, nitric oxide, ammonium salts, light, etc.) and also resist or release adhesion of bacteria (hydrophilic polymers, zwitterionic, antiadhesive, topography, bioinspired surfaces, etc.). This review aims to outline the progress made in the field of biomedical engineering and biomaterials for the development of multifunctional antibacterial biomedical devices. Additionally, principles for material design and fabrication are highlighted using characteristic examples, with a special focus on combinational nitric oxide-releasing biomedical interfaces. A brief perspective on future research directions for engineering of dual-function antibacterial surfaces is also presented.

13.
ACS Appl Bio Mater ; 5(7): 3396-3404, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35792809

RESUMEN

Bacterial infections are a hurdle to the application of medical devices, and in the United States alone, more than one million infection cases are reported annually from indwelling medical devices. Infections not only affect the function of medical devices but also risk the lives and health of patients. Nitric oxide (NO) has been used as an antibacterial therapy that kills bacteria without causing resistance and provides many therapeutic effects such as anti-inflammation, antithrombosis, and angiogenesis. Silicone oils have been widely utilized in manufacturing consumer goods, healthcare products, and medical products. Specifically, liquid silicone oils are used as a medical lubricant that creates lubricated interfaces between medical devices and the exterior physiological environment to improve the performance of medical devices. Herein, we report the first primary S-nitrosothiol-based NO-releasing silicone oil (RSNO-Si) that exhibits proactive antibacterial effects. S-nitrosothiol silicone oils (RSNO-Si) were synthesized and the NO payloads ranged from 34.0 to 603.9 µM. The increased NO payload induced higher-viscosity RSNO-Si oils, as RSNO0.1-Si, RSNO0.5-Si, and RSNO1-Si had viscosities of 12.8 ± 0.1 cP, 32.0 ± 0.2 cP, and 35.1 ± 0.3 cP, respectively. RSNO-Si-SR interfaces were fabricated by infusing silicone rubber (SR) in RSNO-Si oil, and the resulting RSNO-Si-SR disks demonstrated NO release without NO donor leaching. RSNO0.1-Si-SR, RSNO0.5-Si-SR, and RSNO1-Si-SR exhibited maximum NO flux at 0.8, 6.5, and 21.5 × 10 -10 mol cm-2 min-1 in 24 h, respectively. RSNO-Si-SR disks also demonstrated 97.45, 95.40, and 96.08% of inhibition against S. aureus in a 4 h bacterial adhesion assay. Considering the easy synthesis, simple fabrication of non-leaching NO-releasing interfaces, tunable payloads, NO flux levels, and antimicrobial effects, RSNO-Si oils exhibited their potential use as platform chemicals for creating antimicrobial medical device surfaces and other antibacterial materials.


Asunto(s)
Óxido Nítrico , S-Nitrosotioles , Antibacterianos/farmacología , Humanos , Óxido Nítrico/farmacología , Aceites/farmacología , S-Nitrosotioles/farmacología , Elastómeros de Silicona/farmacología , Aceites de Silicona/farmacología , Staphylococcus aureus
14.
J Control Release ; 349: 227-240, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35777483

RESUMEN

A large fraction of nosocomial infections is associated with medical devices that are deemed life-threatening in immunocompromised patients. Medical device-related infections are a result of bacterial colonization and biofilm formation on the device surface that affects >1 million people annually in the US alone. Over the past few years, light-based antimicrobial therapy has made substantial advances in tackling microbial colonization. Taking the advantage of light and antibacterial properties of nitric oxide (NO), for the first time, a robust, biocompatible, anti-infective approach to design a universal disposable catheter disinfection insert (DCDI) that can both prevent bacterial adhesion and disinfect indwelling catheters in situ is reported. The DCDI is engineered using a photo-initiated NO donor molecule, incorporated in polymer tubing that is mounted on a side glow fiber optic connected to an LED light source. Using a smartphone application, the NO release from DCDI is photoactivated via white light resulting in tunable physiological levels of NO for up to 24 h. When challenged with microorganisms S. aureus and E. coli, the NO-releasing DCDI statistically reduced microbial attachment by >99% versus the controls with just 4 h of exposure. The DCDI also eradicated ∼97% of pre-colonized bacteria on the CVC catheter model demonstrating the ability to exterminate an established catheter infection. The smart, mobile-operated novel universal antibacterial device can be used to both prevent catheter infections or can be inserted within an infected catheter to eradicate the bacteria without complex surgical interventions. The therapeutic levels of NO generated via illuminating fiber optics can be the next-generation biocompatible solution for catheter-related bloodstream infections.


Asunto(s)
Antiinfecciosos , Infecciones Relacionadas con Catéteres , Antibacterianos/farmacología , Biopelículas , Infecciones Relacionadas con Catéteres/microbiología , Infecciones Relacionadas con Catéteres/prevención & control , Escherichia coli , Humanos , Óxido Nítrico , Polímeros , Teléfono Inteligente , Staphylococcus aureus/fisiología
15.
ACS Appl Mater Interfaces ; 14(27): 30595-30606, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35759508

RESUMEN

Physical incorporation of nitric oxide (NO) releasing materials in biomedical grade polymer matrices to fabricate antimicrobial coatings and devices is an economically viable process. However, achieving long-term NO release with a minimum or no leaching of the NO donor from the polymer matrix is still a challenging task. Herein, (N-acetyl-S-nitrosopenicillaminyl)-S-nitrosopenicillamine (SNAP-SNAP), a penicillamine dipeptide NO-releasing molecule, is incorporated into a commercially available biomedical grade silicone rubber (SR) to fabricate a NO-releasing coating (SNAP-SNAP/SR). The storage stabilities of the SNAP-SNAP powder and SNAP-SNAP/SR coating were analyzed at different temperatures. The SNAP-SNAP/SR coatings with varying wt % of SNAP-SNAP showed a tunable and sustained NO release for up to 6 weeks. Further, S-nitroso-N-acetylpenicillamine (SNAP), a well-explored NO-releasing molecule, was incorporated into a biomedical grade silicone polymer to fabricate a NO-releasing coating (SNAP/SR) and a comparative analysis of the NO release and S-nitrosothiol (RSNO) leaching behavior of 10 wt % SNAP-SNAP/SR and 10 wt % SNAP/SR was studied. Interestingly, the 10 wt % SNAP-SNAP/SR coatings exhibited ∼36% higher NO release and 4 times less leaching of NO donors than the 10 wt % SNAP/SR coatings. Further, the 10 wt % SNAP-SNAP/SR coatings exhibited promising antibacterial properties against Staphylococcus aureus and Escherichia coli due to the persistent release of NO. The 10 wt % SNAP-SNAP/SR coatings were also found to be biocompatible against NIH 3T3 mouse fibroblast cells. These results corroborate the sustained stability and NO-releasing properties of the SNAP-SNAP in a silicone polymer matrix and demonstrate the potential for the SNAP-SNAP/SR polymer in the fabrication of long-term indwelling biomedical devices and implants to enhance biocompatibility and resist device-related infections.


Asunto(s)
Óxido Nítrico , Elastómeros de Silicona , Animales , Antibacterianos/química , Antibacterianos/farmacología , Escherichia coli/metabolismo , Ratones , Óxido Nítrico/química , Donantes de Óxido Nítrico/química , Compuestos Nitrosos , Polímeros/química , S-Nitroso-N-Acetilpenicilamina/química , S-Nitroso-N-Acetilpenicilamina/farmacología
16.
ACS Appl Mater Interfaces ; 14(19): 21916-21930, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35507415

RESUMEN

Demineralization and breakdown of tooth enamel are characterized by a condition called dental caries or tooth decay, which is caused by two main factors: (1) highly acidic food intake without proper oral hygiene and (2) overactive oral bacteria generating acidic metabolic byproducts. Fluoride treatments have been shown to help rebuild the hydroxyapatite structures that make up 98% of enamel but do not tackle the bacterial overload that continues to threaten future demineralization. Herein, we have created a dual-function Pluronic F127-alginate hydrogel with nitric oxide (NO)- and fluoride-releasing capabilities for the two-pronged treatment of dental caries. Analysis of the hydrogels demonstrated porous, shear-thinning behaviors with tunable mechanical properties. Varying the weight percent of the NO donor S-nitrosoglutathione (GSNO) within the hydrogel enabled physiologically actionable NO release over 4 h, with the fabricated gels demonstrating storage stability over 21 days. This NO-releasing capability resulted in a 97.59% reduction of viable Streptococcus mutans in the planktonic state over 4 h and reduced the preformed biofilm mass by 48.8% after 24 h. Delivery of fluoride ions was confirmed by a fluoride-sensitive electrode, with release levels resulting in the significant prevention of demineralization of hydroxyapatite discs after treatment with an acidic demineralization solution. Exposure to human gingival fibroblasts and human osteoblasts showed cytocompatibility of the hydrogel, demonstrating the potential for the successful treatment of dental caries in patients.


Asunto(s)
Caries Dental , Desmineralización Dental , Caries Dental/tratamiento farmacológico , Caries Dental/prevención & control , Fluoruros/farmacología , Humanos , Hidrogeles/farmacología , Hidroxiapatitas , Óxido Nítrico , Streptococcus mutans/fisiología , Desmineralización Dental/prevención & control
17.
ACS Appl Bio Mater ; 5(5): 2285-2295, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35443135

RESUMEN

Therapeutic agents can be linked to nanoparticles to fortify their selectivity and targeted delivery while impeding systemic toxicity and efficacy loss. Titanium dioxide nanoparticles (TiNPs) owe their rise in biomedical sciences to their versatile applicability, although the lack of inherent antibacterial properties limits its application and necessitates the addition of bactericidal agents along with TiNPs. Structural modifications can improve TiNP's antibacterial impact. The antibacterial efficacy of nitric oxide (NO) against a broad spectrum of bacterial strains is well established. For the first time, S-nitroso-N-acetylpenicillamine (SNAP), an NO donor molecule, was covalently immobilized on TiNPs to form the NO-releasing TiNP-SNAP nanoparticles. The TiNPs were silanized with 3-aminopropyl triethoxysilane, and N-acetyl-d-penicillamine was grafted to them via an amide bond. The nitrosation was carried out by t-butyl nitrite to conjugate the NO-rich SNAP moiety to the surface. The total NO immobilization was measured to be 127.55 ± 4.68 nmol mg-1 using the gold standard chemiluminescence NO analyzer. The NO payload can be released from the TiNP-SNAP under physiological conditions for up to 20 h. The TiNP-SNAP exhibited a concentration-dependent antimicrobial efficiency. At 5 mg mL-1, more than 99.99 and 99.70% reduction in viable Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacteria, respectively, were observed. No significant cytotoxicity was observed against 3T3 mouse fibroblast cells at all the test concentrations determined by the CCK-8 assay. TiNP-SNAP is a promising and versatile nanoparticle that can significantly impact the usage of TiNPs in a wide variety of applications, such as biomaterial coatings, tissue engineering scaffolds, or wound dressings.


Asunto(s)
Nanopartículas , Óxido Nítrico , Animales , Antibacterianos/farmacología , Escherichia coli , Ratones , Óxido Nítrico/química , Penicilamina/farmacología , S-Nitroso-N-Acetilpenicilamina/farmacología , Titanio
18.
J Biomed Mater Res A ; 110(6): 1263-1277, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35170212

RESUMEN

The presence of bacteria and biofilm on medical device surfaces has been linked to serious infections, increased health care costs, and failure of medical devices. Therefore, antimicrobial biointerfaces and medical devices that can thwart microbial attachment and biofilm formation are urgently needed. Both nitric oxide (NO) and chlorhexidine diacetate (CHXD) possess broad-spectrum antibacterial properties. In the past, individual polymer release systems of CHXD and NO donor S-nitroso-N-acetylpenicillamine (SNAP) incorporated polymer platforms have attracted considerable attention for biomedical/therapeutic applications. However, the combination of the two surfaces has not yet been explored. Herein, the synergy of NO and CHXD was evaluated to create an antimicrobial medical-grade silicone rubber. The 10 wt% SNAP films were fabricated using solvent casting with a topcoat of CHXD (1, 3, and 5 wt%) to generate a dual-active antibacterial interface. Chemiluminescence studies confirmed the NO release from SNAP-CHXD films at physiologically relevant levels (0.5-4 × 10-10  mol min-1  cm-2 ) for at least 3 weeks and CHXD release for at least 7 days. Further characterization of the films via SEM-EDS confirmed uniform distribution of SNAP and presence of CHXD within the polymer films without substantial morphological changes, as confirmed by contact angle hysteresis. Moreover, the dual-active SNAP-CHXD films were able to significantly reduce Escherichia coli and Staphylococcus aureus bacteria (>3-log reduction) compared to controls with no explicit toxicity towards mouse fibroblast cells. The synergy between the two potent antimicrobial agents will help combat bacterial contamination on biointerfaces and enhance the longevity of medical devices.


Asunto(s)
Clorhexidina , Óxido Nítrico , Animales , Clorhexidina/farmacología , Ratones , Donantes de Óxido Nítrico , S-Nitroso-N-Acetilpenicilamina/farmacología , Siliconas
19.
J Chem Educ ; 99(7): 2667-2676, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37274940

RESUMEN

Novel biomaterial development is a rapidly growing field that is crucial because biomaterial fouling, due to rapid and irreversible protein adsorption, leads to cellular responses and potentially detrimental consequences such as surface thrombosis, biofilm formation, or inflammation. Therefore, biomaterial technology's fundamentals, like material biocompatibility, are critical in undergraduate education. Exposing undergraduate students to biomaterials and biomedical engineering through interdisciplinary experiments allows them to integrate knowledge from different fields to analyze multidisciplinary results. In this practical laboratory experiment, undergraduate students will characterize surface properties (contact and sliding angle measurements) for the antifouling polydimethylsiloxane (PDMS) polymer using a goniometer and a smartphone, as well as quantify protein adsorption on antifouling surfaces via a colorimetric assay kit to develop their understanding of antifouling surface characteristics, UV-vis spectroscopy, and colorimetric assays. The antifouling PDMS polymer is prepared by silicone oil infusion and compared to untreated control PDMS. The polymer hydrophobicity was demonstrated by static water contact angles of ~99° and 102° for control and antifouling PDMS surfaces, respectively. The control PDMS sliding angle (>90°) was significantly reduced to 9° after antifouling preparation. After 24 h incubation of polymer samples in a 200 mg/mL bovine serum albumin (BSA) solution, the surface adsorbed BSA was quantified using a colorimetric assay. The adsorbed protein on the fouling PDMS controls (29.1 ± 7.0 µg/cm2) was reduced by ~79% on the antifouling PDMS surface (6.2 ± 0.9 µg/cm2). Students will gain experience in materials science, biomedical engineering, chemistry, and biology concepts and better understand the influence of material properties on biological responses for biomaterial interfaces.

20.
ACS Appl Mater Interfaces ; 13(44): 52425-52434, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34723458

RESUMEN

Foreign body response and infection are two universal complications that occur with indwelling medical devices. In response, researchers have developed different antimicrobial and antifouling surface strategies to minimize bacterial colonization and fibrous encapsulation. In this study, the nitric oxide (NO) donor S-nitroso-N-acetylpenicillamine (SNAP) and silicone oil were impregnated into silicone rubber cannulas (SR-SNAP-Si) using a solvent swelling method to improve the antimicrobial properties and decrease the foreign body response. The fabricated SR-SNAP-Si cannulas demonstrated a stable, prolonged NO release, exhibited minimal SNAP leaching, and maintained sliding angles < 15° for 21 days. SR-SNAP-Si cannulas displayed enhanced antimicrobial efficacy against Staphylococcus aureus in a 7-day biofilm bioreactor study, reducing the viability of adhered bacteria by 99.2 ± 0.2% compared to unmodified cannulas while remaining noncytotoxic toward human fibroblast cells. Finally, SR-SNAP-Si cannulas were evaluated for the first time in a 14- and 21-day subcutaneous mouse model, showing significantly enhanced biocompatibility compared to control cannulas by reducing the thickness of fibrous encapsulation by 60.9 ± 6.1 and a 60.8 ± 10.5% reduction in cell density around the implant site after 3 weeks. Thus, this work demonstrates that antifouling, NO-releasing surfaces can improve the lifetime and safety of indwelling medical devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...