Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO J ; 42(13): e112198, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37278161

RESUMEN

There is growing evidence that ion channels are critically involved in cancer cell invasiveness and metastasis. However, the molecular mechanisms of ion signaling promoting cancer behavior are poorly understood and the complexity of the underlying remodeling during metastasis remains to be explored. Here, using a variety of in vitro and in vivo techniques, we show that metastatic prostate cancer cells acquire a specific Na+ /Ca2+ signature required for persistent invasion. We identify the Na+ leak channel, NALCN, which is overexpressed in metastatic prostate cancer, as a major initiator and regulator of Ca2+ oscillations required for invadopodia formation. Indeed, NALCN-mediated Na+ influx into cancer cells maintains intracellular Ca2+ oscillations via a specific chain of ion transport proteins including plasmalemmal and mitochondrial Na+ /Ca2+ exchangers, SERCA and store-operated channels. This signaling cascade promotes activity of the NACLN-colocalized proto-oncogene Src kinase, actin remodeling and secretion of proteolytic enzymes, thus increasing cancer cell invasive potential and metastatic lesions in vivo. Overall, our findings provide new insights into an ion signaling pathway specific for metastatic cells where NALCN acts as persistent invasion controller.


Asunto(s)
Neoplasias de la Próstata , Sodio , Masculino , Humanos , Sodio/metabolismo , Canales Iónicos/metabolismo , Transporte Iónico , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
2.
J Wildl Dis ; 59(2): 224-233, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-37074787

RESUMEN

Antimicrobial resistance (AMR) is a critical challenge of the 21st century for public and animal health. The role of host biodiversity and the environment in the evolution and transmission of resistant bacteria between populations and species, and specifically at the wildlife-livestock-human interface, needs to be further investigated. We evaluated the AMR of commensal Escherichia coli in three mammalian herbivore species-impala (Aepyceros melampus), greater kudu (Tragelaphus strepsiceros), and plains zebra (Equus quagga)-targeting populations living under two conditions: captivity (French zoos) and free ranging (natural and private parks in Zimbabwe). From 137 fecal samples from these three host species, 328 E. coli isolates were isolated. We measured the AMR of each isolate against eight antibiotics, and we assessed the presence of AMR genes and mobile genetic element class 1 integrons (int1). Isolates obtained from captive hosts had a higher probability of being resistant than those obtained from free-ranging hosts (odds ratio, 293.8; confidence interval, 10-94,000). This statistically higher proportion of AMR bacteria in zoos than in natural parks was especially observed for bacteria resistant to amoxicillin. The percentage of int1 detection was higher when isolates were obtained from captive hosts, particularly captive impalas. Ninety percent of bacterial isolates with genes involved in antibiotic resistance also had the int1 gene. The sul1, sul2, blaTEM, and stra genes were found in 14, 19, 0, and 31%, respectively, of E. coli with respective antibiotic resistance. Finally, plains zebra carried AMR significantly more often than the other species.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Animales , Humanos , Herbivoria , Farmacorresistencia Bacteriana/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Animales Salvajes , Bacterias , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/veterinaria , Pruebas de Sensibilidad Microbiana/veterinaria , Mamíferos
4.
Trends Cancer ; 9(1): 9-27, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36400694

RESUMEN

Glioblastoma (GBM) is the most deadly type of malignant brain tumor, despite extensive molecular analyses of GBM cells. In recent years, the tumor microenvironment (TME) has been recognized as an important player and therapeutic target in GBM. However, there is a need for a full and integrated understanding of the different cellular and molecular components involved in the GBM TME and their interactions for the development of more efficient therapies. In this review, we provide a comprehensive report of the GBM TME, which assembles the contributions of physicians and translational researchers working on brain tumor pathology and therapy in France. We propose a holistic view of the subject by delineating the specific features of the GBM TME at the cellular, molecular, and therapeutic levels.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/terapia , Glioblastoma/tratamiento farmacológico , Microambiente Tumoral/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología
5.
Toxins (Basel) ; 14(8)2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35893754

RESUMEN

Acer pseudoplatanus is a worldwide-distributed tree which contains toxins, among them hypoglycin A (HGA). This toxin is known to be responsible for poisoning in various species, including humans, equids, Père David's deer and two-humped camels. We hypothesized that any herbivore pasturing with A. pseudoplatanus in their vicinity may be at risk for HGA poisoning. To test this hypothesis, we surveyed the HGA exposure from A. pseudoplatanus in species not yet described as being at risk. Animals in zoological parks were the major focus, as they are at high probability to be exposed to A. pseudoplatanus in enclosures. We also searched for a toxic metabolite of HGA (i.e., methylenecyclopropylacetyl-carnitine; MCPA-carnitine) in blood and an alteration of the acylcarnitines profile in HGA-positive animals to document the potential risk of declaring clinical signs. We describe for the first instance cases of HGA poisoning in Bovidae. Two gnus (Connochaetes taurinus taurinus) exposed to A. pseudoplatanus in their enclosure presented severe clinical signs, serum HGA and MCPA-carnitine and a marked modification of the acylcarnitines profile. In this study, even though all herbivores were exposed to A. pseudoplatanus, proximal fermenters species seemed less susceptible to HGA poisoning. Therefore, a ruminal transformation of HGA is hypothesized. Additionally, we suggest a gradual alteration of the fatty acid metabolism in case of HGA poisoning and thus the existence of subclinical cases.


Asunto(s)
Ácido 2-Metil-4-clorofenoxiacético , Acer , Ciervos , Enfermedades de los Caballos , Enfermedades Musculares , Animales , Carnitina , Herbivoria , Caballos , Humanos
6.
Oncogene ; 41(21): 2920-2931, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35411034

RESUMEN

Metastatic progression is a major burden for breast cancer patients and is associated with the ability of cancer cells to overcome stressful conditions, such as nutrients deprivation and hypoxia, and to gain invasive properties. Autophagy and epithelial-to-mesenchymal transition are critical contributors to these processes. Here, we show that the P2X4 purinergic receptor is upregulated in breast cancer biopsies from patients and it is primarily localised in endolysosomes. We demonstrate that P2X4 enhanced invasion in vitro, as well as mammary tumour growth and metastasis in vivo. The pro-malignant role of P2X4 was mediated by the regulation of lysosome acidity, the promotion of autophagy and cell survival. Furthermore, the autophagic activity was associated with epithelial-to-mesenchymal transition (EMT), and this role of P2X4 was even more pronounced under metabolic challenges. Pharmacological and gene silencing of P2X4 inhibited both autophagy and EMT, whereas its rescue in knocked-down cells led to the restoration of the aggressive phenotype. Together, our results demonstrate a previously unappreciated role for P2X4 in regulating lysosomal functions and fate, promoting breast cancer progression and aggressiveness.


Asunto(s)
Neoplasias de la Mama , Receptores Purinérgicos P2X4 , Autofagia/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo
7.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34502189

RESUMEN

Since its discovery, mitophagy has been viewed as a protective mechanism used by cancer cells to prevent the induction of mitochondrial apoptosis. Most cancer treatments directly or indirectly cause mitochondrial dysfunction in order to trigger signals for cell death. Elimination of these dysfunctional mitochondria by mitophagy could thus prevent the initiation of the apoptotic cascade. In breast cancer patients, resistance to doxorubicin (DOX), one of the most widely used cancer drugs, is an important cause of poor clinical outcomes. However, the role played by mitophagy in the context of DOX resistance in breast cancer cells is not well understood. We therefore tried to determine whether an increase in mitophagic flux was associated with the resistance of breast cancer cells to DOX. Our first objective was to explore whether DOX-resistant breast cancer cells were characterized by conditions that favor mitophagy induction. We next tried to determine whether mitophagic flux was increased in DOX-resistant cells in response to DOX treatment. For this purpose, the parental (MCF-7) and DOX-resistant (MCF-7dox) breast cancer cell lines were used. Our results show that mitochondrial reactive oxygen species (ROS) production and hypoxia-inducible factor-1 alpha (HIF-1 alpha) expression are higher in MCF-7dox in a basal condition compared to MCF-7, suggesting DOX-resistant breast cancer cells are prone to stimuli to induce a mitophagy-related event. Our results also showed that, in response to DOX, autophagolysosome formation is induced in DOX-resistant breast cancer cells. This mitophagic step following DOX treatment seems to be partly due to mitochondrial ROS production as autophagolysosome formation is moderately decreased by the mitochondrial antioxidant mitoTEMPO.


Asunto(s)
Neoplasias de la Mama/fisiopatología , Doxorrubicina/farmacología , Resistencia a Antineoplásicos , Lisosomas , Mitofagia , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Doxorrubicina/uso terapéutico , Femenino , Humanos , Células MCF-7 , Mitocondrias/metabolismo
8.
FASEB J ; 35(10): e21838, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34582061

RESUMEN

Inflammation, oxidative stress, and protease/protease inhibitor imbalance with excessive production of proteases are factors associated with pathogenesis of the chronic obstructive pulmonary disease (COPD). In this study, we report that kallikrein-related peptidase 5 (KLK5) is a crucial protease involved in extracellular matrix (ECM) remodeling and bronchial epithelial repair after injury. First, we showed that KLK5 degrades the basal layer formed by culture of primary bronchial epithelial cells from COPD or non-COPD patients. Also, exogenous KLK5 acted differently on BEAS-2B cells already engaged in epithelial-to-mesenchymal transition (EMT) or on 16HBE 14o- cells harboring epithelial characteristics. Indeed, by inducing EMT, KLK5 reduced BEAS-2B cell adherence to the ECM. This effect, neutralized by tissue factor pathway inhibitor 2, a kunitz-type serine protease inhibitor, was due to a direct proteolytic activity of KLK5 on E-cadherin, ß-catenin, fibronectin, and α5ß1 integrin. Thus, KLK5 may strengthen EMT mechanisms and promote the migration of cells by activating the mitogen-activated protein kinase signaling pathway required for this function. In contrast, knockdown of endogenous KLK5 in 16HBE14o- cells, accelerated wound healing repair after injury, and exogenous KLK5 addition delayed the closure repair. These data suggest that among proteases, KLK5 could play a critical role in airway remodeling events associated with COPD during exposure of the pulmonary epithelium to inhaled irritants or smoking and the inflammation process.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Bronquios/patología , Células Epiteliales/patología , Transición Epitelial-Mesenquimal , Calicreínas/metabolismo , Neoplasias Pulmonares/patología , Enfermedad Pulmonar Obstructiva Crónica/patología , Anciano , Antígenos CD/genética , Antígenos CD/metabolismo , Bronquios/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Estudios de Casos y Controles , Células Cultivadas , Células Epiteliales/metabolismo , Femenino , Humanos , Calicreínas/genética , Neoplasias Pulmonares/metabolismo , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Transducción de Señal
9.
Cancers (Basel) ; 13(15)2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34359819

RESUMEN

White adipose tissue interacts closely with breast cancers through the secretion of soluble factors such as cytokines, growth factors or fatty acids. However, the molecular mechanisms of these interactions and their roles in cancer progression remain poorly understood. In this study, we investigated the role of fatty acids in the cooperation between adipocytes and breast cancer cells using a co-culture model. We report that adipocytes increase autophagy in breast cancer cells through the acidification of lysosomes, leading to cancer cell survival in nutrient-deprived conditions and to cancer cell migration. Mechanistically, the disturbance of membrane phospholipid composition with a decrease in arachidonic acid content is responsible for autophagy activation in breast cancer cells induced by adipocytes. Therefore, autophagy might be a central cellular mechanism of white adipose tissue interactions with cancer cells and thus participate in cancer progression.

10.
J Pathol ; 255(2): 166-176, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34219239

RESUMEN

The prostate gland is surrounded by periprostatic adipose tissue (PPAT), which is believed to play a role in prostate cancer (PCa) progression. Cancer cells can take up lipids from the microenvironment and store them in lipid droplets (LDs). Fatty acids released from LDs are used by PCa cells as preferential metabolic fuels to provide energy and promote cancer progression. Recently, fatty acids have been associated with autophagy, a cellular recycling pathway. Lipophagy is a selective form of autophagy involved in LD degradation, the role of which in PCa progression remains unknown. Here, we explored markers of autophagy and lipophagy in human PCa tissues in correlation with factors of aggressiveness, and we evaluated the influence of PPAT adipocytes on autophagy and lipophagy. We analyzed markers of autophagy (p62, LC3), lipid droplets (PLIN and Oil Red O), androgen receptor (AR), proliferation (Ki67), and epithelial-mesenchymal transition (Zeb1) on 465 PCa samples. Co-cultures of PCa cell lines PC3 and 22RV1 with adipocytes isolated from patients' PPAT were used to analyze the influence of PPAT on autophagy and lipophagy in vitro. In human PCa tissues, we observed a correlation between markers of LD and those of autophagy, which are associated with clinical and biological factors of disease aggressiveness. In addition, PLIN staining was associated with AR expression. In locally advanced PCa, p62, LC3, and PLIN were increased in extraprostatic areas where cancer cells are in contact with PPAT. Co-culture of PCa cell lines with adipocytes decreased autophagy activity and increased LD flux in PC3 cells. These results suggest an active process of lipophagy in PCa, linked to disease aggressiveness, to the proximity of PPAT, and induced in vitro in co-culture with adipocytes. Lipophagy is therefore likely to be a crucial player in PCa progression. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Tejido Adiposo , Autofagia/fisiología , Neoplasias de la Próstata/patología , Anciano , Humanos , Gotas Lipídicas/metabolismo , Masculino , Persona de Mediana Edad
11.
Eur J Med Chem ; 218: 113258, 2021 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-33813152

RESUMEN

Herein, we report the design, synthesis and evaluation of novel bioinspired imidazo[1,2-a:4,5c']dipyridines. The structural optimization identified four anti-proliferative compounds. Compounds 11, 18, 19 and 20 exhibited excellent anticancer activities in vitro with IC50 of 0.4-5 µM against three human cancer cell lines (MDA-MB-468, MDA-MB-435s and MDA-MB-231). These four compounds induced apoptosis in MDA-MB-231 cells in a dose-dependent manner, targeting different apoptotic proteins expression: 11 increased the expression of pro-apoptotic Bax protein while 18-20 reduced the level of anti-apoptotic Bcl-2 protein. Compounds 18 and 19 also reduced MDA-MB-231 cells proliferation as measured by Ki-67 staining. Furthermore, compounds were also tested for the ability to inhibit cell migration in the highly aggressive human MDA-MB-435s cell line. Six compounds of this series (8, 15, 18, 22, 23, 24) inhibited cell migration by 41-50% while four compounds (20, 25, 27, 30) inhibited the migration by 53-62% in wound-healing experiments. Interestingly, compound 20 presented both antiproliferative and anti-migration activities and might be a promising anti-metastatic agent for cancer treatment.


Asunto(s)
Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas
12.
J Biol Chem ; 296: 100422, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33607109

RESUMEN

Despite being initially regarded as a metabolic waste product, lactate is now considered to serve as a primary fuel for the tricarboxylic acid cycle in cancer cells. At the core of lactate metabolism, lactate dehydrogenases (LDHs) catalyze the interconversion of lactate to pyruvate and as such represent promising targets in cancer therapy. However, direct inhibition of the LDH active site is challenging from physicochemical and selectivity standpoints. However, LDHs are obligate tetramers. Thus, targeting the LDH tetrameric interface has emerged as an appealing strategy. In this work, we examine a dimeric construct of truncated human LDH to search for new druggable sites. We report the identification and characterization of a new cluster of interactions in the LDH tetrameric interface. Using nanoscale differential scanning fluorimetry, chemical denaturation, and mass photometry, we identified several residues (E62, D65, L71, and F72) essential for LDH tetrameric stability. Moreover, we report a family of peptide ligands based on this cluster of interactions. We next demonstrated these ligands to destabilize tetrameric LDHs through binding to this new tetrameric interface using nanoscale differential scanning fluorimetry, NMR water-ligand observed via gradient spectroscopy, and microscale thermophoresis. Altogether, this work provides new insights on the LDH tetrameric interface as well as valuable pharmacological tools for the development of LDH tetramer disruptors.


Asunto(s)
Mapeo Epitopo/métodos , L-Lactato Deshidrogenasa/metabolismo , Humanos , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/fisiología , Lactato Deshidrogenasas/metabolismo , Ácido Láctico/metabolismo , Ligandos , Imagen por Resonancia Magnética/métodos , Péptidos/metabolismo
13.
Cancer Metastasis Rev ; 40(1): 31-46, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33009650

RESUMEN

Environment surrounding tumours are now recognized to play an important role in tumour development and progression. Among the cells found in the tumour environment, adipocytes from adipose tissue establish a vicious cycle with cancer cells to promote cancer survival, proliferation, metastasis and treatment resistance. This cycle is particularly of interest in the context of obesity, which has been found as a cancer risk factor. Cancers cells can reprogram adipocyte physiology leading to an "activated" phenotype characterized by delipidation and secretion of inflammatory adipokines. The adipocyte secretions then influence tumour growth and metastasis which has been mainly attributed to interleukin 6 (IL-6) or leptin but also to the release of fatty acids which are able to change cancer cell metabolism and signalling pathways. The aim of this review is to report recent advances in the understanding of the molecular mechanisms linking adipose tissue with cancer progression in order to propose new therapeutic strategies based on pharmacological or nutritional intervention.


Asunto(s)
Tejido Adiposo , Neoplasias , Adipocitos , Adipoquinas , Humanos , Obesidad , Transducción de Señal
14.
Int J Mol Sci ; 21(21)2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33126604

RESUMEN

Cardiolipins (CLs) are specific phospholipids of the mitochondria composing about 20% of the inner mitochondria membrane (IMM) phospholipid mass. Dysregulation of CL metabolism has been observed in several types of cancer. In most cases, the evidence for a role for CL in cancer is merely correlative, suggestive, ambiguous, and cancer-type dependent. In addition, CLs could play a pivotal role in several mitochondrial functions/parameters such as bioenergetics, dynamics, mitophagy, and apoptosis, which are involved in key steps of cancer aggressiveness (i.e., migration/invasion and resistance to treatment). Therefore, this review focuses on studies suggesting that changes in CL content and/or composition, as well as CL metabolism enzyme levels, may be linked with the progression and the aggressiveness of some types of cancer. Finally, we also introduce the main mitochondrial function in which CL could play a pivotal role with a special focus on its implication in cancer development and therapy.


Asunto(s)
Cardiolipinas/metabolismo , Metabolismo Energético , Mitocondrias/patología , Neoplasias/patología , Estrés Oxidativo , Animales , Humanos , Mitocondrias/metabolismo , Mitofagia , Neoplasias/metabolismo
15.
Sci Rep ; 10(1): 13350, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32770034

RESUMEN

The acquisition of invasive capacities by carcinoma cells, i.e. their ability to migrate through and to remodel extracellular matrices, is a determinant process leading to their dissemination and to the development of metastases. these cancer cell properties have often been associated with an increased Rho-ROCK signalling, and ROCK inhibitors have been proposed for anticancer therapies. In this study we used the selective ROCK inhibitor, Y-27632, to address the participation of the Rho-ROCK signalling pathway in the invasive properties of SW620 human colon cancer cells. Contrarily to initial assumptions, Y-27632 induced the acquisition of a pro-migratory cell phenotype and increased cancer cell invasiveness in both 3- and 2-dimensions assays. This effect was also obtained using the other ROCK inhibitor Fasudil as well as with knocking down the expression of ROCK-1 or ROCK-2, but was prevented by the inhibition of NaV1.5 voltage-gated sodium channel activity. Indeed, ROCK inhibition enhanced the activity of the pro-invasive NaV1.5 channel through a pathway that was independent of gene expression regulation. In conclusions, our evidence identifies voltage-gated sodium channels as new targets of the ROCK signalling pathway, as well as responsible for possible deleterious effects of the use of ROCK inhibitors in the treatment of cancers.


Asunto(s)
Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Invasividad Neoplásica/patología , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Amidas/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Piridinas/farmacología , Transducción de Señal/efectos de los fármacos
16.
Cancers (Basel) ; 12(9)2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32825056

RESUMEN

The P2X7 receptor is an ATP-gated cation channel with a still ambiguous role in cancer progression, proposed to be either pro- or anti-cancerous, depending on the cancer or cell type in the tumour. Its role in mammary cancer progression is not yet defined. Here, we show that P2X7 receptor is functional in highly aggressive mammary cancer cells, and induces a change in cell morphology with fast F-actin reorganization and formation of filopodia, and promotes cancer cell invasiveness through both 2- and 3-dimensional extracellular matrices in vitro. Furthermore, P2X7 receptor sustains Cdc42 activity and the acquisition of a mesenchymal phenotype. In an immunocompetent mouse mammary cancer model, we reveal that the expression of P2X7 receptor in cancer cells, but not in the host mice, promotes tumour growth and metastasis development, which were reduced by treatment with specific P2X7 antagonists. Our results demonstrate that P2X7 receptor drives mammary tumour progression and represents a pertinent target for mammary cancer treatment.

17.
PLoS One ; 15(6): e0225485, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32484831

RESUMEN

Mesenchymal stem cells (MSC)-spheroid models favor maintenance of stemness, ex vivo expansion and transplantation efficacy. Spheroids may also be considered as useful surrogate models of the hematopoietic niche. However, accessibility to primary cells, from bone marrow (BM) or adipose tissues, may limit their experimental use and the lack of consistency in methods to form spheroids may affect data interpretation. In this study, we aimed to create a simple model by examining the ability of cell lines, from human (HS-27a and HS-5) and murine (MS-5) BM origins, to form spheroids, compared to primary human MSCs (hMSCs). Our protocol efficiently allowed the spheroid formation from all cell types within 24 hours. Whilst hMSC-spheroids began to shrink after 24 hours, the size of spheroids from cell lines remained constant during three weeks. The difference was partially explained by the balance between proliferation and cell death, which could be triggered by hypoxia and induced oxidative stress. Our results demonstrate that, like hMSCs, MSC cell lines make reproductible spheroids that are easily handled. Thus, this model could help in understanding mechanisms involved in MSC functions and may provide a simple model by which to study cell interactions in the BM niche.


Asunto(s)
Células Madre Mesenquimatosas/citología , Esferoides Celulares/citología , Animales , Agregación Celular , Muerte Celular , Desdiferenciación Celular , Hipoxia de la Célula , Línea Celular , Proliferación Celular , Humanos , Ratones , Estrés Oxidativo
18.
J Med Chem ; 63(9): 4628-4643, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32250117

RESUMEN

Lactate dehydrogenases (LDHs) are tetrameric enzymes of major significance in cancer metabolism as well as promising targets for cancer therapy. However, their wide and polar catalytic sites make them a challenging target for orthosteric inhibition. In this work, we conceived to target LDH tetramerization sites with the ambition of disrupting their oligomeric state. To do so, we designed a protein model of a dimeric LDH-H. We exploited this model through WaterLOGSY nuclear magnetic resonance and microscale thermophoresis for the identification and characterization of a set of α-helical peptides and stapled derivatives that specifically targeted the LDH tetramerization sites. This strategy resulted in the design of a macrocyclic peptide that competes with the LDH tetramerization domain, thus disrupting and destabilizing LDH tetramers. These peptides and macrocycles, along with the dimeric model of LDH-H, constitute promising pharmacological tools for the de novo design and identification of LDH tetramerization disruptors. Overall, our study demonstrates that disrupting LDH oligomerization state by targeting their tetramerization sites is achievable and paves the way toward LDH inhibition through this novel molecular mechanism.


Asunto(s)
Antineoplásicos/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Péptidos Cíclicos/metabolismo , Multimerización de Proteína/efectos de los fármacos , Sitio Alostérico , Secuencia de Aminoácidos , Antineoplásicos/química , Humanos , L-Lactato Deshidrogenasa/química , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Péptidos Cíclicos/química , Unión Proteica , Relación Estructura-Actividad
19.
Semin Cell Dev Biol ; 98: 129-138, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31154012

RESUMEN

Metabolic reprogramming in tumours is now recognized as a hallmark of cancer, participating both in tumour growth and cancer progression. Cancer cells develop global metabolic adaptations allowing them to survive in the low oxygen and nutrient tumour microenvironment. Among these metabolic adaptations, cancer cells use glycolysis but also mitochondrial oxidations to produce ATP and building blocks needed for their high proliferation rate. Another particular adaptation of cancer cell metabolism is the use of autophagy and specific forms of autophagy like mitophagy to recycle intracellular components in condition of metabolic stress or during anticancer treatments. The plasticity of cancer cell metabolism is a major limitation of anticancer treatments and could participate to therapy resistances. The aim of this review is to report recent advances in the understanding of the relationship between tumour metabolism and autophagy/mitophagy in order to propose new therapeutic strategies.


Asunto(s)
Autofagia , Mitofagia , Neoplasias/metabolismo , Neoplasias/patología , Animales , Reprogramación Celular , Humanos
20.
Front Oncol ; 9: 1332, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31850217

RESUMEN

The metabolism of cancer cells differs from that of their normal counterparts in a spectrum of attributes, including imbalances in diverse metabolic arms and pathways, metabolic plasticity and extent of adaptive responses, levels, and activities of metabolic enzymes and their upstream regulators and abnormal fluxes of metabolic intermediates and products. These attributes endow cancer cells with the ability to survive stressors of the tumor microenvironment and enable them to landscape and exploit the host terrain, thereby facilitating cancer progression and therapy resistance. Understanding the molecular and physiological principles of cancer metabolism is one of the key prerequisites for the development of better anticancer treatments. Therefore, various aspects of cancer metabolism were addressed at the 5th annual meeting of the International Society of Cancer Metabolism (ISCaM) in Bratislava, Slovakia, on October 17-20, 2018. The meeting presentations and discussions were traditionally focused on mechanistic, translational, and clinical characteristics of metabolism and pH control in cancer, at the level of molecular pathways, cells, tissues, and organisms. In order to reflect major healthcare challenges of the current era, ISCaM has extended its scope to metabolic disorders contributing to cancer, as well as to opportunities for their prevention, intervention, and therapeutic targeting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...