Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 112022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36125261

RESUMEN

T cells use kinetic proofreading to discriminate antigens by converting small changes in antigen-binding lifetime into large differences in cell activation, but where in the signaling cascade this computation is performed is unknown. Previously, we developed a light-gated immune receptor to probe the role of ligand kinetics in T cell antigen signaling. We found significant kinetic proofreading at the level of the signaling lipid diacylglycerol (DAG) but lacked the ability to determine where the multiple signaling steps required for kinetic discrimination originate in the upstream signaling cascade (Tiseher and Weiner, 2019). Here, we uncover where kinetic proofreading is executed by adapting our optogenetic system for robust activation of early signaling events. We find the strength of kinetic proofreading progressively increases from Zap70 recruitment to LAT clustering to downstream DAG generation. Leveraging the ability of our system to rapidly disengage ligand binding, we also measure slower reset rates for downstream signaling events. These data suggest a distributed kinetic proofreading mechanism, with proofreading steps both at the receptor and at slower resetting downstream signaling complexes that could help balance antigen sensitivity and discrimination.


Asunto(s)
Antígenos , Diglicéridos , Antígenos/metabolismo , Cinética , Ligandos , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T
2.
J Cell Biol ; 221(2)2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-34964841

RESUMEN

To control their movement, cells need to coordinate actin assembly with the geometric features of their substrate. Here, we uncover a role for the actin regulator WASP in the 3D migration of neutrophils. We show that WASP responds to substrate topology by enriching to sites of inward, substrate-induced membrane deformation. Superresolution imaging reveals that WASP preferentially enriches to the necks of these substrate-induced invaginations, a distribution that could support substrate pinching. WASP facilitates recruitment of the Arp2/3 complex to these sites, stimulating local actin assembly that couples substrate features with the cytoskeleton. Surprisingly, WASP only enriches to membrane deformations in the front half of the cell, within a permissive zone set by WASP's front-biased regulator Cdc42. While WASP KO cells exhibit relatively normal migration on flat substrates, they are defective at topology-directed migration. Our data suggest that WASP integrates substrate topology with cell polarity by selectively polymerizing actin around substrate-induced membrane deformations in the front half of the cell.


Asunto(s)
Movimiento Celular , Polaridad Celular , Neutrófilos/citología , Neutrófilos/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Citoesqueleto de Actina/metabolismo , Células HEK293 , Células HL-60 , Humanos , Especificidad por Sustrato
3.
Biointerphases ; 14(5): 051003, 2019 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-31547664

RESUMEN

The need for direct biomaterial-based delivery of growth factors to wound surfaces to aid in wound healing emphasizes the importance of interfacial interactions between the biomaterial and the wound surface. These interactions include the spatial localization of growth factor, the surface intensity of growth factor in contact with the wound, and the release profile of growth factor to the wound surface. The authors report the use of time-of-flight secondary ion mass spectrometry to determine the relationship between biomaterial surface chemistry and the spatial localization of growth factor. They have implemented a novel application of total internal reflectance fluorescence (TIRF) microscopy to measure the surface intensity and release of growth factor in contact with a glass substrate that has been used to model a wound surface. Detailed information regarding TIRF experiments has been included to aid in future studies regarding the biomaterial delivery to interfaces. The authors have evaluated the effects of (hydroxyethyl)methacrylate (HEMA) homopolymer, 5.89% methyl methacrylate/HEMA, and 5.89% methacrylic acid/HEMA surface chemistry on the spatial localization of AlexaFluor 488-labeled keratinocyte growth factor (AF488-KGF), AF488-KGF surface intensity at the copolymer surface, and release to a glass substrate. KGF is known to promote re-epithelialization in wound healing. The results show that the two copolymers allow for increased surface coverage, surface intensity, and release of AF488-KGF in comparison to the homopolymer. It is likely that differences in these three aspects could have a profound effect on the wound healing response.


Asunto(s)
Factor 7 de Crecimiento de Fibroblastos/química , Colorantes Fluorescentes/química , Queratinocitos/metabolismo , Espectrometría de Masas , Metacrilatos/química , Coloración y Etiquetado , Humanos , Queratinocitos/citología , Microscopía Fluorescente , Propiedades de Superficie
4.
Biol Open ; 7(7)2018 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-30037883

RESUMEN

Although the primary protein sequence of ubiquitin (Ub) is extremely stable over evolutionary time, it is highly tolerant to mutation during selection experiments performed in the laboratory. We have proposed that this discrepancy results from the difference between fitness under laboratory culture conditions and the selective pressures in changing environments over evolutionary timescales. Building on our previous work (Mavor et al., 2016), we used deep mutational scanning to determine how twelve new chemicals (3-Amino-1,2,4-triazole, 5-fluorocytosine, Amphotericin B, CaCl2, Cerulenin, Cobalt Acetate, Menadione, Nickel Chloride, p-Fluorophenylalanine, Rapamycin, Tamoxifen, and Tunicamycin) reveal novel mutational sensitivities of ubiquitin residues. Collectively, our experiments have identified eight new sensitizing conditions for Lys63 and uncovered a sensitizing condition for every position in Ub except Ser57 and Gln62. By determining the ubiquitin fitness landscape under different chemical constraints, our work helps to resolve the inconsistencies between deep mutational scanning experiments and sequence conservation over evolutionary timescales.

5.
Lab Chip ; 11(23): 3941-8, 2011 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-22027752

RESUMEN

Recent advances in microfluidics have created new and exciting prospects for gene delivery and therapy. The micro-scaled environment within microfluidic systems enables precise control and optimization of multiple processes and techniques used in gene transfection and the production of gene and drug transporters. Traditional non-viral gene transfection methods, such as electroporation, microinjection and optical gene transfection, are improved from the use of innovative microfluidic systems. Additionally, microfluidic systems have also made the production of many viral and non-viral vectors controlled, automated, and reproducible. In summary, the development and application of microfluidic systems are producing increased efficiency in gene delivery and promise improved gene therapy results.


Asunto(s)
Terapia Genética/métodos , Técnicas Analíticas Microfluídicas , Animales , Técnicas de Transferencia de Gen/instrumentación , Humanos , Técnicas Analíticas Microfluídicas/instrumentación , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...