Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mBio ; 13(2): e0291321, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35196127

RESUMEN

Ammonium translocation through biological membranes, by the ubiquitous Amt-Mep-Rh family of transporters, plays a key role in all domains of life. Two highly conserved histidine residues protrude into the lumen of the pore of these transporters, forming the family's characteristic Twin-His motif. It has been hypothesized that the motif is essential to confer the selectivity of the transport mechanism. Here, using a combination of in vitro electrophysiology on Escherichia coli AmtB, in silico molecular dynamics simulations, and in vivo yeast functional complementation assays, we demonstrate that variations in the Twin-His motif trigger a mechanistic switch between a specific transporter, depending on ammonium deprotonation, to an unspecific ion channel activity. We therefore propose that there is no selective filter that governs specificity in Amt-Mep-Rh transporters, but the inherent mechanism of translocation, dependent on the fragmentation of the substrate, ensures the high specificity of the translocation. We show that coexistence of both mechanisms in single Twin-His variants of yeast Mep2 transceptors disrupts the signaling function and so impairs fungal filamentation. These data support a signaling process driven by the transport mechanism of the fungal Mep2 transceptors. IMPORTANCE Fungal infections represent a significant threat to human health and cause huge damage to crop yields worldwide. The dimorphic switch between yeast and filamentous growth is associated with the virulence of pathogenic fungi. Of note, fungal Mep2 proteins of the conserved Amt-Mep-Rh family play a transceptor role in the induction of filamentation; however, the signaling mechanism remains largely unknown. Amt-Mep-Rh proteins ensure the specific scavenging of NH4+ through a mechanism relying on substrate deprotonation, thereby preventing competition and translocation of similar-sized K+. Our multidisciplinary approaches using E. coli AmtB, Saccharomyces cerevisiae, and Candida albicans Mep2 show that double variation of the family-defining Twin-His motif triggers a mechanistic switch from a specific transporter to an unspecific ion channel with both mechanisms still coexisting in single variants. Moreover, we show that this mechanistic alteration is associated with loss of signaling ability of Mep2, supporting a transport mechanism-driven process in filamentation induction.


Asunto(s)
Compuestos de Amonio , Proteínas de Transporte de Catión , Proteínas de Escherichia coli , Proteínas de Saccharomyces cerevisiae , Candida albicans/genética , Proteínas de Transporte de Catión/genética , Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas Fúngicas/genética , Humanos , Proteínas de Transporte de Membrana/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Translocación Genética
2.
PLoS Genet ; 16(2): e1008634, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32069286

RESUMEN

The dimorphic transition from the yeast to the filamentous form of growth allows cells to explore their environment for more suitable niches and is often crucial for the virulence of pathogenic fungi. In contrast to their Mep1/3 paralogues, fungal Mep2-type ammonium transport proteins of the conserved Mep-Amt-Rh family have been assigned an additional receptor role required to trigger the filamentation signal in response to ammonium scarcity. Here, genetic, kinetic and structure-function analyses were used to shed light on the poorly characterized signaling role of Saccharomyces cerevisiae Mep2. We show that Mep2 variants lacking the C-terminal tail conserve the ability to induce filamentation, revealing that signaling can proceed in the absence of exclusive binding of a putative partner to the largest cytosolic domain of the protein. Our data support that filamentation signaling requires the conformational changes accompanying substrate translocation through the pore crossing the hydrophobic core of Mep2. pHluorin reporter assays show that the transport activity of Mep2 and of non-signaling Mep1 differently affect yeast cytosolic pH in vivo, and that the unique pore variant Mep2H194E, with apparent uncoupling of transport and signaling functions, acquires increased ability of acidification. Functional characterization in Xenopus oocytes reveals that Mep2 mediates electroneutral substrate translocation while Mep1 performs electrogenic transport. Our findings highlight that the Mep2-dependent filamentation induction is connected to its specific transport mechanism, suggesting a role of pH in signal mediation. Finally, we show that the signaling process is conserved for the Mep2 protein from the human pathogen Candida albicans.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Hifa/metabolismo , Dominios Proteicos/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Compuestos de Amonio/metabolismo , Animales , Proteínas de Transporte de Catión/genética , Genes Reporteros/genética , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Mutación , Oocitos , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal/fisiología , Xenopus
3.
iScience ; 20: 415-433, 2019 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-31622882

RESUMEN

To adjust cell growth and metabolism according to environmental conditions, the conserved TORC1 signaling network controls autophagy, protein synthesis, and turnover. Here, we dissected the signals controlling phosphorylation and activity of the TORC1-effector kinase Npr1, involved in tuning the plasma membrane permeability to nitrogen sources. By evaluating a role of pH as a signal, we show that, although a transient cytosolic acidification accompanies nitrogen source entry and is correlated to a rapid TORC1-dependent phosphorylation of Npr1, a pH drop is not a prerequisite for TORC1 activation. We show that the Gtr1/Gtr2 and Pib2 regulators of TORC1 both independently and differently contribute to regulate Npr1 phosphorylation and activity. Finally, our data reveal that Npr1 mediates nitrogen-dependent phosphorylation of Pib2, as well as a Pib2-dependent inhibition of TORC1. This work highlights a feedback control loop likely enabling efficient downregulation and faster re-activation of TORC1 in response to a novel stimulating signal.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...