Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
EBioMedicine ; 102: 105025, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458111

RESUMEN

BACKGROUND: Lung function trajectories (LFTs) have been shown to be an important measure of long-term health in asthma. While there is a growing body of metabolomic studies on asthma status and other phenotypes, there are no prospective studies of the relationship between metabolomics and LFTs or their genomic determinants. METHODS: We utilized ordinal logistic regression to identify plasma metabolite principal components associated with four previously-published LFTs in children from the Childhood Asthma Management Program (CAMP) (n = 660). The top significant metabolite principal component (PCLF) was evaluated in an independent cross-sectional child cohort, the Genetic Epidemiology of Asthma in Costa Rica Study (GACRS) (n = 1151) and evaluated for association with spirometric measures. Using meta-analysis of CAMP and GACRS, we identified associations between PCLF and microRNA, and SNPs in their target genes. Statistical significance was determined using an false discovery rate-adjusted Q-value. FINDINGS: The top metabolite principal component, PCLF, was significantly associated with better LFTs after multiple-testing correction (Q-value = 0.03). PCLF is composed of the urea cycle, caffeine, corticosteroid, carnitine, and potential microbial (secondary bile acid, tryptophan, linoleate, histidine metabolism) metabolites. Higher levels of PCLF were also associated with increases in lung function measures and decreased circulating neutrophil percentage in both CAMP and GACRS. PCLF was also significantly associated with microRNA miR-143-3p, and SNPs in three miR-143-3p target genes; CCZ1 (P-value = 2.6 × 10-5), SLC8A1 (P-value = 3.9 × 10-5); and TENM4 (P-value = 4.9 × 10-5). INTERPRETATION: This study reveals associations between metabolites, miR-143-3p and LFTs in children with asthma, offering insights into asthma physiology and possible interventions to enhance lung function and long-term health. FUNDING: Molecular data for CAMP and GACRS via the Trans-Omics in Precision Medicine (TOPMed) program was supported by the National Heart, Lung, and Blood Institute (NHLBI).


Asunto(s)
Asma , MicroARNs , Niño , Humanos , Estudios Transversales , Pulmón/metabolismo , MicroARNs/metabolismo , Metabolómica
2.
Front Mol Biosci ; 9: 957549, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090035

RESUMEN

Introduction: The AMP-activated protein kinase (AMPK) is a master regulator of energy homeostasis that becomes activated by exercise and binds glycogen, an important energy store required to meet exercise-induced energy demands. Disruption of AMPK-glycogen interactions in mice reduces exercise capacity and impairs whole-body metabolism. However, the mechanisms underlying these phenotypic effects at rest and following exercise are unknown. Furthermore, the plasma metabolite responses to an acute exercise challenge in mice remain largely uncharacterized. Methods: Plasma samples were collected from wild type (WT) and AMPK double knock-in (DKI) mice with disrupted AMPK-glycogen binding at rest and following 30-min submaximal treadmill running. An untargeted metabolomics approach was utilized to determine the breadth of plasma metabolite changes occurring in response to acute exercise and the effects of disrupting AMPK-glycogen binding. Results: Relative to WT mice, DKI mice had reduced maximal running speed (p < 0.0001) concomitant with increased body mass (p < 0.01) and adiposity (p < 0.001). A total of 83 plasma metabolites were identified/annotated, with 17 metabolites significantly different (p < 0.05; FDR<0.1) in exercised (↑6; ↓11) versus rested mice, including amino acids, acylcarnitines and steroid hormones. Pantothenic acid was reduced in DKI mice versus WT. Distinct plasma metabolite profiles were observed between the rest and exercise conditions and between WT and DKI mice at rest, while metabolite profiles of both genotypes converged following exercise. These differences in metabolite profiles were primarily explained by exercise-associated increases in acylcarnitines and steroid hormones as well as decreases in amino acids and derivatives following exercise. DKI plasma showed greater decreases in amino acids following exercise versus WT. Conclusion: This is the first study to map mouse plasma metabolomic changes following a bout of acute exercise in WT mice and the effects of disrupting AMPK-glycogen interactions in DKI mice. Untargeted metabolomics revealed alterations in metabolite profiles between rested and exercised mice in both genotypes, and between genotypes at rest. This study has uncovered known and previously unreported plasma metabolite responses to acute exercise in WT mice, as well as greater decreases in amino acids following exercise in DKI plasma. Reduced pantothenic acid levels may contribute to differences in fuel utilization in DKI mice.

3.
Front Immunol ; 13: 876654, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35990635

RESUMEN

Appropriate innate immune function is essential to limit pathogenesis and severity of severe lower respiratory infections (sLRI) during infancy, a leading cause of hospitalization and risk factor for subsequent asthma in this age group. Employing a systems biology approach to analysis of multi-omic profiles generated from a high-risk cohort (n=50), we found that the intensity of activation of an LPS-induced interferon gene network at birth was predictive of sLRI risk in infancy (AUC=0.724). Connectivity patterns within this network were stronger among susceptible individuals, and a systems biology approach identified IRF1 as a putative master regulator of this response. These findings were specific to the LPS-induced interferon response and were not observed following activation of viral nucleic acid sensing pathways. Comparison of responses at birth versus age 5 demonstrated that LPS-induced interferon responses but not responses triggered by viral nucleic acid sensing pathways may be subject to strong developmental regulation. These data suggest that the risk of sLRI in early life is in part already determined at birth, and additionally that the developmental status of LPS-induced interferon responses may be a key determinant of susceptibility. Our findings provide a rationale for the identification of at-risk infants for early intervention aimed at sLRI prevention and identifies targets which may be relevant for drug development.


Asunto(s)
Asma , Ácidos Nucleicos , Infecciones del Sistema Respiratorio , Antivirales , Preescolar , Humanos , Lactante , Recién Nacido , Interferones , Lipopolisacáridos/farmacología
4.
Eur Respir J ; 59(6)2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34824054

RESUMEN

INTRODUCTION: Asthma is a heterogeneous disease with poorly defined phenotypes. Patients with severe asthma often receive multiple treatments including oral corticosteroids (OCS). Treatment may modify the observed metabotype, rendering it challenging to investigate underlying disease mechanisms. Here, we aimed to identify dysregulated metabolic processes in relation to asthma severity and medication. METHODS: Baseline urine was collected prospectively from healthy participants (n=100), patients with mild-to-moderate asthma (n=87) and patients with severe asthma (n=418) in the cross-sectional U-BIOPRED cohort; 12-18-month longitudinal samples were collected from patients with severe asthma (n=305). Metabolomics data were acquired using high-resolution mass spectrometry and analysed using univariate and multivariate methods. RESULTS: A total of 90 metabolites were identified, with 40 significantly altered (p<0.05, false discovery rate <0.05) in severe asthma and 23 by OCS use. Multivariate modelling showed that observed metabotypes in healthy participants and patients with mild-to-moderate asthma differed significantly from those in patients with severe asthma (p=2.6×10-20), OCS-treated asthmatic patients differed significantly from non-treated patients (p=9.5×10-4), and longitudinal metabotypes demonstrated temporal stability. Carnitine levels evidenced the strongest OCS-independent decrease in severe asthma. Reduced carnitine levels were associated with mitochondrial dysfunction via decreases in pathway enrichment scores of fatty acid metabolism and reduced expression of the carnitine transporter SLC22A5 in sputum and bronchial brushings. CONCLUSIONS: This is the first large-scale study to delineate disease- and OCS-associated metabolic differences in asthma. The widespread associations with different therapies upon the observed metabotypes demonstrate the need to evaluate potential modulating effects on a treatment- and metabolite-specific basis. Altered carnitine metabolism is a potentially actionable therapeutic target that is independent of OCS treatment, highlighting the role of mitochondrial dysfunction in severe asthma.


Asunto(s)
Antiasmáticos , Asma , Corticoesteroides/uso terapéutico , Antiasmáticos/uso terapéutico , Asma/genética , Carnitina/uso terapéutico , Estudios Transversales , Humanos , Índice de Severidad de la Enfermedad , Miembro 5 de la Familia 22 de Transportadores de Solutos
5.
Sci Signal ; 14(690)2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34230210

RESUMEN

Coronavirus disease 2019 (COVID-19) has poorer clinical outcomes in males than in females, and immune responses underlie these sex-related differences. Because immune responses are, in part, regulated by metabolites, we examined the serum metabolomes of COVID-19 patients. In male patients, kynurenic acid (KA) and a high KA-to-kynurenine (K) ratio (KA:K) positively correlated with age and with inflammatory cytokines and chemokines and negatively correlated with T cell responses. Males that clinically deteriorated had a higher KA:K than those that stabilized. KA inhibits glutamate release, and glutamate abundance was lower in patients that clinically deteriorated and correlated with immune responses. Analysis of data from the Genotype-Tissue Expression (GTEx) project revealed that the expression of the gene encoding the enzyme that produces KA, kynurenine aminotransferase, correlated with cytokine abundance and activation of immune responses in older males. This study reveals that KA has a sex-specific link to immune responses and clinical outcomes in COVID-19, suggesting a positive feedback between metabolites and immune responses in males.


Asunto(s)
COVID-19/inmunología , Ácido Quinurénico/inmunología , SARS-CoV-2 , Adulto , Anciano , COVID-19/sangre , Estudios de Casos y Controles , Síndrome de Liberación de Citoquinas/sangre , Síndrome de Liberación de Citoquinas/etiología , Síndrome de Liberación de Citoquinas/inmunología , Citocinas/sangre , Citocinas/inmunología , Femenino , Humanos , Ácido Quinurénico/sangre , Modelos Logísticos , Masculino , Redes y Vías Metabólicas/inmunología , Metabolómica , Persona de Mediana Edad , Análisis Multivariante , Índice de Severidad de la Enfermedad , Factores Sexuales , Transducción de Señal/inmunología , Triptófano/metabolismo
6.
Front Mol Biosci ; 8: 650839, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33937331

RESUMEN

Captive breeding is a vital tool in the conservation of highly endangered species, as it is for the Margaret River hairy marron, Cherax tenuimanus, from the south west of Australia. A close relative, Cherax cainii, has almost completely displaced C. tenuimanus in the wild and is a successful aquaculture species, whereas C. tenuimanus has performed poorly in captivity. We used untargeted liquid chromatography-mass spectrometry to obtain metabolomic profiles of female and male C. tenuimanus held in controlled aquarium conditions during their reproductive period. Using repeated haemolymph sampling we tracked the metabolomic profiles of animals just prior to and for a period of up to 34 days after pairing with a similar sized potential mate. We identified 54 reproducible annotated metabolites including amino acids, fatty acids, biogenic amines, purine and pyrimidine metabolites and excretion metabolites. Hierarchical clustering analysis distinguished five metabolite clusters. Principal component-canonical variate analysis clearly distinguished females from males, both unpaired and paired; similar trends in profile changes in both sexes after pairing; and a striking shift in males upon pairing. We discuss three main patterns of metabolomic responses: differentiation between sexes; reactive responses to the disturbance of pairing; and convergent response to the disturbance of pairing for males. Females generally had higher concentrations of metabolites involved in metabolic rate, mobilisation of energy stores and stress. Responses to the disturbance of pairing were also related to elevated stress. Females were mobilising lipid stores to deposit yolk, whereas males had a rapid and strong response to pairing, with shifts in metabolites associated with gonad development and communication, indicating males could complete reproductive readiness only once paired with a female. The metabolomic profiles support a previously proposed potential mechanism for displacement of C. tenuimanus by C. cainii in the wild and identify several biomarkers for testing hypotheses regarding reproductive success using targeted metabolomics.

7.
J Pediatr ; 229: 175-181.e1, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33039387

RESUMEN

OBJECTIVE: To validate our previously identified candidate metabolites, and to assess the ability of these metabolites to predict hypoxic-ischemic encephalopathy (HIE) both individually and combined with clinical data. STUDY DESIGN: Term neonates with signs of perinatal asphyxia, with and without HIE, and matched controls were recruited prospectively at birth from 2 large maternity units. Umbilical cord blood was collected for later batch metabolomic analysis by mass spectroscopy along with clinical details. The optimum selection of clinical and metabolites features with the ability to predict the development of HIE was determined using logistic regression modelling and machine learning techniques. Outcome of HIE was determined by clinical Sarnat grading and confirmed by electroencephalogram grade at 24 hours. RESULTS: Fifteen of 27 candidate metabolites showed significant alteration in infants with perinatal asphyxia or HIE when compared with matched controls. Metabolomic data predicted the development of HIE with an area under the curve of 0.67 (95% CI, 0.62-0.71). Lactic acid and alanine were the primary metabolite predictors for the development of HIE, and when combined with clinical data, gave an area under the curve of 0.96 (95% CI, 0.92-0.95). CONCLUSIONS: By combining clinical and metabolic data, accurate identification of infants who will develop HIE is possible shortly after birth, allowing early initiation of therapeutic hypothermia.


Asunto(s)
Sangre Fetal/metabolismo , Hipoxia-Isquemia Encefálica/diagnóstico , Alanina/sangre , Puntaje de Apgar , Asfixia Neonatal/complicaciones , Biomarcadores/sangre , Estudios de Casos y Controles , Electroencefalografía , Humanos , Recién Nacido , Ácido Láctico/sangre , Modelos Logísticos , Aprendizaje Automático , Metabolómica , Valor Predictivo de las Pruebas , Estudios Prospectivos , Resucitación , Sensibilidad y Especificidad
8.
medRxiv ; 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32935119

RESUMEN

Coronavirus disease-2019 (COVID-19) has poorer clinical outcomes in males compared to females, and immune responses underlie these sex-related differences in disease trajectory. As immune responses are in part regulated by metabolites, we examined whether the serum metabolome has sex-specificity for immune responses in COVID-19. In males with COVID- 19, kynurenic acid (KA) and a high KA to kynurenine (K) ratio was positively correlated with age, inflammatory cytokines, and chemokines and was negatively correlated with T cell responses, revealing that KA production is linked to immune responses in males. Males that clinically deteriorated had a higher KA:K ratio than those that stabilized. In females with COVID-19, this ratio positively correlated with T cell responses and did not correlate with age or clinical severity. KA is known to inhibit glutamate release, and we observed that serum glutamate is lower in patients that deteriorate from COVID-19 compared to those that stabilize, and correlates with immune responses. Analysis of Genotype-Tissue Expression (GTEx) data revealed that expression of kynurenine aminotransferase, which regulates KA production, correlates most strongly with cytokine levels and aryl hydrocarbon receptor activation in older males. This study reveals that KA has a sex-specific link to immune responses and clinical outcomes, in COVID-19 infection.

9.
Metabolomics ; 16(2): 17, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31965332

RESUMEN

INTRODUCTION: Metabolomics data is commonly modelled multivariately using partial least squares discriminant analysis (PLS-DA). Its success is primarily due to ease of interpretation, through projection to latent structures, and transparent assessment of feature importance using regression coefficients and Variable Importance in Projection scores. In recent years several non-linear machine learning (ML) methods have grown in popularity but with limited uptake essentially due to convoluted optimisation and interpretation. Artificial neural networks (ANNs) are a non-linear projection-based ML method that share a structural equivalence with PLS, and as such should be amenable to equivalent optimisation and interpretation methods. OBJECTIVES: We hypothesise that standardised optimisation, visualisation, evaluation and statistical inference techniques commonly used by metabolomics researchers for PLS-DA can be migrated to a non-linear, single hidden layer, ANN. METHODS: We compared a standardised optimisation, visualisation, evaluation and statistical inference techniques workflow for PLS with the proposed ANN workflow. Both workflows were implemented in the Python programming language. All code and results have been made publicly available as Jupyter notebooks on GitHub. RESULTS: The migration of the PLS workflow to a non-linear, single hidden layer, ANN was successful. There was a similarity in significant metabolites determined using PLS model coefficients and ANN Connection Weight Approach. CONCLUSION: We have shown that it is possible to migrate the standardised PLS-DA workflow to simple non-linear ANNs. This result opens the door for more widespread use and to the investigation of transparent interpretation of more complex ANN architectures.


Asunto(s)
Análisis Discriminante , Análisis de los Mínimos Cuadrados , Metabolómica , Redes Neurales de la Computación , Programas Informáticos
10.
Metabolomics ; 15(12): 150, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31728648

RESUMEN

INTRODUCTION: Metabolomics is increasingly being used in the clinical setting for disease diagnosis, prognosis and risk prediction. Machine learning algorithms are particularly important in the construction of multivariate metabolite prediction. Historically, partial least squares (PLS) regression has been the gold standard for binary classification. Nonlinear machine learning methods such as random forests (RF), kernel support vector machines (SVM) and artificial neural networks (ANN) may be more suited to modelling possible nonlinear metabolite covariance, and thus provide better predictive models. OBJECTIVES: We hypothesise that for binary classification using metabolomics data, non-linear machine learning methods will provide superior generalised predictive ability when compared to linear alternatives, in particular when compared with the current gold standard PLS discriminant analysis. METHODS: We compared the general predictive performance of eight archetypal machine learning algorithms across ten publicly available clinical metabolomics data sets. The algorithms were implemented in the Python programming language. All code and results have been made publicly available as Jupyter notebooks. RESULTS: There was only marginal improvement in predictive ability for SVM and ANN over PLS across all data sets. RF performance was comparatively poor. The use of out-of-bag bootstrap confidence intervals provided a measure of uncertainty of model prediction such that the quality of metabolomics data was observed to be a bigger influence on generalised performance than model choice. CONCLUSION: The size of the data set, and choice of performance metric, had a greater influence on generalised predictive performance than the choice of machine learning algorithm.


Asunto(s)
Análisis Discriminante , Metabolómica/clasificación , Metabolómica/métodos , Algoritmos , Humanos , Análisis de los Mínimos Cuadrados , Aprendizaje Automático , Redes Neurales de la Computación , Pronóstico , Máquina de Vectores de Soporte
11.
Metabolomics ; 15(11): 142, 2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31628551

RESUMEN

BACKGROUND: Metabolomics data, with its complex covariance structure, is typically modelled by projection-based machine learning (ML) methods such as partial least squares (PLS) regression, which project data into a latent structure. Biological data are often non-linear, so it is reasonable to hypothesize that metabolomics data may also have a non-linear latent structure, which in turn would be best modelled using non-linear equations. A non-linear ML method with a similar projection equation structure to PLS is artificial neural networks (ANNs). While ANNs were first applied to metabolic profiling data in the 1990s, the lack of community acceptance combined with limitations in computational capacity and the lack of volume of data for robust non-linear model optimisation inhibited their widespread use. Due to recent advances in computational power, modelling improvements, community acceptance, and the more demanding needs for data science, ANNs have made a recent resurgence in interest across research communities, including a small yet growing usage in metabolomics. As metabolomics experiments become more complex and start to be integrated with other omics data, there is potential for ANNs to become a viable alternative to linear projection methods. AIM OF REVIEW: We aim to first describe ANNs and their structural equivalence to linear projection-based methods, including PLS regression. We then review the historical, current, and future uses of ANNs in the field of metabolomics. KEY SCIENTIFIC CONCEPT OF REVIEW: Is metabolomics ready for the return of artificial neural networks?


Asunto(s)
Metabolómica , Redes Neurales de la Computación , Algoritmos , Análisis de los Mínimos Cuadrados , Aprendizaje Automático
12.
Metabolomics ; 15(10): 125, 2019 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-31522294

RESUMEN

BACKGROUND: A lack of transparency and reporting standards in the scientific community has led to increasing and widespread concerns relating to reproduction and integrity of results. As an omics science, which generates vast amounts of data and relies heavily on data science for deriving biological meaning, metabolomics is highly vulnerable to irreproducibility. The metabolomics community has made substantial efforts to align with FAIR data standards by promoting open data formats, data repositories, online spectral libraries, and metabolite databases. Open data analysis platforms also exist; however, they tend to be inflexible and rely on the user to adequately report their methods and results. To enable FAIR data science in metabolomics, methods and results need to be transparently disseminated in a manner that is rapid, reusable, and fully integrated with the published work. To ensure broad use within the community such a framework also needs to be inclusive and intuitive for both computational novices and experts alike. AIM OF REVIEW: To encourage metabolomics researchers from all backgrounds to take control of their own data science, mould it to their personal requirements, and enthusiastically share resources through open science. KEY SCIENTIFIC CONCEPTS OF REVIEW: This tutorial introduces the concept of interactive web-based computational laboratory notebooks. The reader is guided through a set of experiential tutorials specifically targeted at metabolomics researchers, based around the Jupyter Notebook web application, GitHub data repository, and Binder cloud computing platform.


Asunto(s)
Nube Computacional , Ciencia de los Datos , Metabolómica , Programas Informáticos , Animales , Humanos
13.
J Cereb Blood Flow Metab ; 39(1): 147-162, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-28840775

RESUMEN

Elucidating metabolic effects of hypoxic-ischaemic encephalopathy (HIE) may reveal early biomarkers of injury and new treatment targets. This study uses untargeted metabolomics to examine early metabolic alterations in a carefully defined neonatal population. Infants with perinatal asphyxia who were resuscitated at birth and recovered (PA group), those who developed HIE (HIE group) and healthy controls were all recruited at birth. Metabolomic analysis of cord blood was performed using direct infusion FT-ICR mass spectrometry. For each reproducibly detected metabolic feature, mean fold differences were calculated HIE vs. controls (ΔHIE) and PA vs. controls (ΔPA). Putative metabolite annotations were assigned and pathway analysis was performed. Twenty-nine putatively annotated metabolic features were significantly different in ΔPA after false discovery correction ( q < 0.05), with eight of these also significantly altered in ΔHIE. Altered putative metabolites included; melatonin, leucine, kynurenine and 3-hydroxydodecanoic acid which differentiated between infant groups (ΔPA and ΔHIE); and D-erythrose-phosphate, acetone, 3-oxotetradecanoic acid and methylglutarylcarnitine which differentiated across severity grades of HIE. Pathway analysis revealed ΔHIE was associated with a 50% and 75% perturbation of tryptophan and pyrimidine metabolism, respectively. We have identified perturbed metabolic pathways and potential biomarkers specific to PA and HIE, which measured at birth, may help direct treatment.


Asunto(s)
Asfixia Neonatal/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Redes y Vías Metabólicas , Metabolómica/métodos , Biomarcadores , Química Encefálica , Femenino , Sangre Fetal/química , Humanos , Recién Nacido , Masculino , Resucitación
14.
Exp Physiol ; 104(1): 81-92, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30311980

RESUMEN

NEW FINDINGS: What is the central question of this study? Does 14 days of live-high, train-low simulated altitude alter an individual's metabolomic/metabolic profile? What is the main finding and its importance? This study demonstrated that ∼200 h of moderate simulated altitude exposure resulted in greater variance in measured metabolites between subject than within subject, which indicates individual variability during the adaptive phase to altitude exposure. In addition, metabolomics results indicate that altitude alters multiple metabolic pathways, and the time course of these pathways is different over 14 days of altitude exposure. These findings support previous literature and provide new information on the acute adaptation response to altitude. ABSTRACT: The purpose of this study was to determine the influence of 14 days of normobaric hypoxic simulated altitude exposure at 3000 m on the human plasma metabolomic profile. For 14 days, 10 well-trained endurance runners (six men and four women; 29 ± 7 years of age) lived at 3000 m simulated altitude, accumulating 196.4 ± 25.6 h of hypoxic exposure, and trained at ∼600 m. Resting plasma samples were collected at baseline and on days 3 and 14 of altitude exposure and stored at -80°C. Plasma samples were analysed using liquid chromatography-high-resolution mass spectrometry to construct a metabolite profile of altitude exposure. Mass spectrometry of plasma identified 36 metabolites, of which eight were statistically significant (false discovery rate probability 0.1) from baseline to either day 3 or day 14. Specifically, changes in plasma metabolites relating to amino acid metabolism (tyrosine and proline), glycolysis (adenosine) and purine metabolism (adenosine) were observed during altitude exposure. Principal component canonical variate analysis showed significant discrimination between group means (P < 0.05), with canonical variate 1 describing a non-linear recovery trajectory from baseline to day 3 and then back to baseline by day 14. Conversely, canonical variate 2 described a weaker non-recovery trajectory and increase from baseline to day 3, with a further increase from day 3 to 14. The present study demonstrates that metabolomics can be a useful tool to monitor metabolic changes associated with altitude exposure. Furthermore, it is apparent that altitude exposure alters multiple metabolic pathways, and the time course of these changes is different over 14 days of altitude exposure.


Asunto(s)
Altitud , Hipoxia/metabolismo , Metaboloma/fisiología , Consumo de Oxígeno/fisiología , Adulto , Femenino , Humanos , Masculino , Metabolómica/métodos , Descanso/fisiología , Carrera/fisiología , Adulto Joven
15.
Anal Chem ; 90(22): 13400-13408, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30335973

RESUMEN

Integration of multiomics data remains a key challenge in fulfilling the potential of comprehensive systems biology. Multiple-block orthogonal projections to latent structures (OnPLS) is a projection method that simultaneously models multiple data matrices, reducing feature space without relying on a priori biological knowledge. In order to improve the interpretability of OnPLS models, the associated multi-block variable influence on orthogonal projections (MB-VIOP) method is used to identify variables with the highest contribution to the model. This study combined OnPLS and MB-VIOP with interactive visualization methods to interrogate an exemplar multiomics study, using a subset of 22 individuals from an asthma cohort. Joint data structure in six data blocks was assessed: transcriptomics; metabolomics; targeted assays for sphingolipids, oxylipins, and fatty acids; and a clinical block including lung function, immune cell differentials, and cytokines. The model identified seven components, two of which had contributions from all blocks (globally joint structure) and five that had contributions from two to five blocks (locally joint structure). Components 1 and 2 were the most informative, identifying differences between healthy controls and asthmatics and a disease-sex interaction, respectively. The interactions between features selected by MB-VIOP were visualized using chord plots, yielding putative novel insights into asthma disease pathogenesis, the effects of asthma treatment, and biological roles of uncharacterized genes. For example, the gene ATP6 V1G1, which has been implicated in osteoporosis, correlated with metabolites that are dysregulated by inhaled corticoid steroids (ICS), providing insight into the mechanisms underlying bone density loss in asthma patients taking ICS. These results show the potential for OnPLS, combined with MB-VIOP variable selection and interaction visualization techniques, to generate hypotheses from multiomics studies and inform biology.


Asunto(s)
Asma/metabolismo , Análisis de Datos , Biología de Sistemas/métodos , Adulto , Asma/genética , Femenino , Genómica/métodos , Humanos , Masculino , Metabolómica/métodos , Persona de Mediana Edad , Análisis Multivariante , Proteómica/métodos , Linfocitos T/metabolismo , Adulto Joven
16.
Metabolomics ; 12(10): 149, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27642271

RESUMEN

INTRODUCTION BACKGROUND TO METABOLOMICS: Metabolomics is the comprehensive study of the metabolome, the repertoire of biochemicals (or small molecules) present in cells, tissues, and body fluids. The study of metabolism at the global or "-omics" level is a rapidly growing field that has the potential to have a profound impact upon medical practice. At the center of metabolomics, is the concept that a person's metabolic state provides a close representation of that individual's overall health status. This metabolic state reflects what has been encoded by the genome, and modified by diet, environmental factors, and the gut microbiome. The metabolic profile provides a quantifiable readout of biochemical state from normal physiology to diverse pathophysiologies in a manner that is often not obvious from gene expression analyses. Today, clinicians capture only a very small part of the information contained in the metabolome, as they routinely measure only a narrow set of blood chemistry analytes to assess health and disease states. Examples include measuring glucose to monitor diabetes, measuring cholesterol and high density lipoprotein/low density lipoprotein ratio to assess cardiovascular health, BUN and creatinine for renal disorders, and measuring a panel of metabolites to diagnose potential inborn errors of metabolism in neonates. OBJECTIVES OF WHITE PAPER­EXPECTED TREATMENT OUTCOMES AND METABOLOMICS ENABLING TOOL FOR PRECISION MEDICINE: We anticipate that the narrow range of chemical analyses in current use by the medical community today will be replaced in the future by analyses that reveal a far more comprehensive metabolic signature. This signature is expected to describe global biochemical aberrations that reflect patterns of variance in states of wellness, more accurately describe specific diseases and their progression, and greatly aid in differential diagnosis. Such future metabolic signatures will: (1) provide predictive, prognostic, diagnostic, and surrogate markers of diverse disease states; (2) inform on underlying molecular mechanisms of diseases; (3) allow for sub-classification of diseases, and stratification of patients based on metabolic pathways impacted; (4) reveal biomarkers for drug response phenotypes, providing an effective means to predict variation in a subject's response to treatment (pharmacometabolomics); (5) define a metabotype for each specific genotype, offering a functional read-out for genetic variants: (6) provide a means to monitor response and recurrence of diseases, such as cancers: (7) describe the molecular landscape in human performance applications and extreme environments. Importantly, sophisticated metabolomic analytical platforms and informatics tools have recently been developed that make it possible to measure thousands of metabolites in blood, other body fluids, and tissues. Such tools also enable more robust analysis of response to treatment. New insights have been gained about mechanisms of diseases, including neuropsychiatric disorders, cardiovascular disease, cancers, diabetes and a range of pathologies. A series of ground breaking studies supported by National Institute of Health (NIH) through the Pharmacometabolomics Research Network and its partnership with the Pharmacogenomics Research Network illustrate how a patient's metabotype at baseline, prior to treatment, during treatment, and post-treatment, can inform about treatment outcomes and variations in responsiveness to drugs (e.g., statins, antidepressants, antihypertensives and antiplatelet therapies). These studies along with several others also exemplify how metabolomics data can complement and inform genetic data in defining ethnic, sex, and gender basis for variation in responses to treatment, which illustrates how pharmacometabolomics and pharmacogenomics are complementary and powerful tools for precision medicine. CONCLUSIONS KEY SCIENTIFIC CONCEPTS AND RECOMMENDATIONS FOR PRECISION MEDICINE: Our metabolomics community believes that inclusion of metabolomics data in precision medicine initiatives is timely and will provide an extremely valuable layer of data that compliments and informs other data obtained by these important initiatives. Our Metabolomics Society, through its "Precision Medicine and Pharmacometabolomics Task Group", with input from our metabolomics community at large, has developed this White Paper where we discuss the value and approaches for including metabolomics data in large precision medicine initiatives. This White Paper offers recommendations for the selection of state of-the-art metabolomics platforms and approaches that offer the widest biochemical coverage, considers critical sample collection and preservation, as well as standardization of measurements, among other important topics. We anticipate that our metabolomics community will have representation in large precision medicine initiatives to provide input with regard to sample acquisition/preservation, selection of optimal omics technologies, and key issues regarding data collection, interpretation, and dissemination. We strongly recommend the collection and biobanking of samples for precision medicine initiatives that will take into consideration needs for large-scale metabolic phenotyping studies.

17.
Mol Biosyst ; 12(4): 1367-77, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26932201

RESUMEN

Human pharmaceuticals have been detected in wastewater treatment plants, rivers, and estuaries throughout Europe and the United States. It is widely acknowledged that there is insufficient information available to determine whether prolonged exposure to low levels of these substances is having an impact on the microbial ecology in such environments. In this study we attempt to measure the effects of exposing cultures of Pseudomonas putida KT2440 (UWC1) to six pharmaceuticals by looking at differences in metabolite levels. Initially, we used Fourier transform infrared (FT-IR) spectroscopy coupled with multivariate analysis to discriminate between cell cultures exposed to different pharmaceuticals. This suggested that on exposure to propranolol there were significant changes in the lipid complement of P. putida. Metabolic profiling with gas chromatography-mass spectrometry (GC-MS), coupled with univariate statistical analyses, was used to identify endogenous metabolites contributing to discrimination between cells exposed to the six drugs. This approach suggested that the energy reserves of exposed cells were being expended and was particularly evident on exposure to propranolol. Adenosine triphosphate (ATP) concentrations were raised in P. putida exposed to propranolol. Increased energy requirements may be due to energy dependent efflux pumps being used to remove propranolol from the cell.


Asunto(s)
Metaboloma , Metabolómica , Preparaciones Farmacéuticas , Pseudomonas putida/efectos de los fármacos , Pseudomonas putida/metabolismo , Adenosina Trifosfato/metabolismo , Análisis de Varianza , Cromatografía de Gases y Espectrometría de Masas , Metabolómica/métodos , Propranolol/farmacología , Espectroscopía Infrarroja por Transformada de Fourier
18.
Sci Rep ; 5: 18241, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26667607

RESUMEN

Preeclampsia (PE) and fetal growth restriction (FGR) are serious complications of pregnancy, associated with greatly increased risk of maternal and perinatal morbidity and mortality. These complications are difficult to diagnose and no curative treatments are available. We hypothesized that the metabolomic signature of two models of disease, catechol-O-methyl transferase (COMT(-/-)) and endothelial nitric oxide synthase (Nos3(-/-)) knockout mice, would be significantly different from control C57BL/6J mice. Further, we hypothesised that any differences in COMT(-/-) mice would be resolved following treatment with Sildenafil, a treatment which rescues fetal growth. Targeted, quantitative comparisons of serum metabolic profiles of pregnant Nos3(-/-), COMT(-/-) and C57BL/6J mice were made using a kit from BIOCRATES. Significant differences in 4 metabolites were observed between Nos3(-/-) and C57BL/6J mice (p < 0.05) and in 18 metabolites between C57BL/6J and COMT(-/-) mice (p < 0.05). Following treatment with Sildenafil, only 5 of the 18 previously identified differences in metabolites (p < 0.05) remained in COMT(-/-) mice. Metabolomic profiling of mouse models is possible, producing signatures that are clearly different from control animals. A potential new treatment, Sildenafil, is able to normalize the aberrant metabolomic profile in COMT(-/-) mice; as this treatment moves into clinical trials, this information may assist in assessing possible mechanisms of action.


Asunto(s)
Catecol O-Metiltransferasa/genética , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/metabolismo , Metaboloma/efectos de los fármacos , Preeclampsia/genética , Preeclampsia/metabolismo , Citrato de Sildenafil/farmacología , Animales , Catecol O-Metiltransferasa/metabolismo , Modelos Animales de Enfermedad , Femenino , Retardo del Crecimiento Fetal/tratamiento farmacológico , Metabolómica/métodos , Ratones , Ratones Noqueados , Preeclampsia/tratamiento farmacológico , Embarazo
19.
PLoS One ; 9(9): e103217, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25184286

RESUMEN

BACKGROUND: Blood-vessel dysfunction arises before overt hyperglycemia in type-2 diabetes (T2DM). We hypothesised that a metabolomic approach might identify metabolites/pathways perturbed in this pre-hyperglycemic phase. To test this hypothesis and for specific metabolite hypothesis generation, serum metabolic profiling was performed in young women at increased, intermediate and low risk of subsequent T2DM. METHODS: Participants were stratified by glucose tolerance during a previous index pregnancy into three risk-groups: overt gestational diabetes (GDM; n = 18); those with glucose values in the upper quartile but below GDM levels (UQ group; n = 45); and controls (n = 43, below the median glucose values). Follow-up serum samples were collected at a mean 22 months postnatally. Samples were analysed in a random order using Ultra Performance Liquid Chromatography coupled to an electrospray hybrid LTQ-Orbitrap mass spectrometer. Statistical analysis included principal component (PCA) and multivariate methods. FINDINGS: Significant between-group differences were observed at follow-up in waist circumference (86, 95%CI (79-91) vs 80 (76-84) cm for GDM vs controls, p<0.05), adiponectin (about 33% lower in GDM group, p = 0.004), fasting glucose, post-prandial glucose and HbA1c, but the latter 3 all remained within the 'normal' range. Substantial differences in metabolite profiles were apparent between the 2 'at-risk' groups and controls, particularly in concentrations of phospholipids (4 metabolites with p ≤ 0.01), acylcarnitines (3 with p ≤ 0.02), short- and long-chain fatty acids (3 with p<  = 0.03), and diglycerides (4 with p ≤ 0.05). INTERPRETATION: Defects in adipocyte function from excess energy storage as relatively hypoxic visceral and hepatic fat, and impaired mitochondrial fatty acid oxidation may initiate the observed perturbations in lipid metabolism. Together with evidence from the failure of glucose-directed treatments to improve cardiovascular outcomes, these data and those of others indicate that a new, quite different definition of type-2 diabetes is required. This definition would incorporate disturbed lipid metabolism prior to hyperglycemia.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Diabetes Gestacional/metabolismo , Hiperglucemia/metabolismo , Metabolismo de los Lípidos , Metaboloma , Estado Prediabético/metabolismo , Adiponectina/sangre , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Adulto , Glucemia/metabolismo , Carnitina/análogos & derivados , Carnitina/sangre , Diabetes Mellitus Tipo 2/patología , Diabetes Gestacional/patología , Diglicéridos/sangre , Ayuno , Femenino , Estudios de Seguimiento , Prueba de Tolerancia a la Glucosa , Humanos , Hiperglucemia/patología , Insulina/sangre , Fosfolípidos/sangre , Estado Prediabético/patología , Embarazo , Análisis de Componente Principal
20.
Retrovirology ; 11: 35, 2014 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-24886384

RESUMEN

BACKGROUND: Human immunodeficiency virus type 1(HIV-1) infects and activates innate immune cells in the brain resulting in inflammation and neuronal death with accompanying neurological deficits. Induction of inflammasomes causes cleavage and release of IL-1ß and IL-18, representing pathogenic processes that underlie inflammatory diseases although their contribution HIV-associated brain disease is unknown. RESULTS: Investigation of inflammasome-associated genes revealed that IL-1ß, IL-18 and caspase-1 were induced in brains of HIV-infected persons and detected in brain microglial cells. HIV-1 infection induced pro-IL-1ß in human microglia at 4 hr post-infection with peak IL-1ß release at 24 hr, which was accompanied by intracellular ASC translocation and caspase-1 activation. HIV-dependent release of IL-1ß from a human macrophage cell line, THP-1, was inhibited by NLRP3 deficiency and high extracellular [K+]. Exposure of microglia to HIV-1 gp120 caused IL-1ß production and similarly, HIV-1 envelope pseudotyped viral particles induced IL-1ß release, unlike VSV-G pseudotyped particles. Infection of cultured feline macrophages by the related lentivirus, feline immunodeficiency virus (FIV), also resulted in the prompt induction of IL-1ß. In vivo FIV infection activated multiple inflammasome-associated genes in microglia, which was accompanied by neuronal loss in cerebral cortex and neurological deficits. Multivariate analyses of data from FIV-infected and uninfected animals disclosed that IL-1ß, NLRP3 and caspase-1 expression in cerebral cortex represented key molecular determinants of neurological deficits. CONCLUSIONS: NLRP3 inflammasome activation was an early and integral aspect of lentivirus infection of microglia, which was associated with lentivirus-induced brain disease. Inflammasome activation in the brain might represent a potential target for therapeutic interventions in HIV/AIDS.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida/metabolismo , Síndrome de Inmunodeficiencia Adquirida/virología , Encefalopatías/metabolismo , Encefalopatías/virología , Infecciones por VIH/metabolismo , VIH-1 , Inflamasomas/metabolismo , Microglía/metabolismo , Animales , Caspasa 1/metabolismo , Gatos , Línea Celular , Corteza Cerebral/metabolismo , Corteza Cerebral/virología , Femenino , Infecciones por VIH/virología , Humanos , Virus de la Inmunodeficiencia Felina , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Macrófagos/virología , Microglía/virología , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...