Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38585740

RESUMEN

Aggression, a sexually dimorphic behaviour, is prevalent in males and typically absent in virgin females. Following parturition, however, the transient expression of aggression in adult female mice protects pups from predators and infanticide by male conspecifics. While maternal hormones are known to elicit nursing, their potential role in maternal aggression remains elusive. Here, we show in mice that a molecularly defined subset of ventral premammillary (PMvDAT) neurons, instrumental for intermale aggression, switch from quiescence to a hyperexcitable state during lactation. We identify that the maternal hormones prolactin and oxytocin excite these cells through actions that include T-type Ca2+ channels. Optogenetic manipulation or genetic ablation of PMvDAT neurons profoundly affects maternal aggression, while activation of these neurons impairs the expression of non-aggression-related maternal behaviours. This work identifies a monomorphic neural substrate that can incorporate hormonal cues to enable the transient expression of a dormant behavioural program in lactating females.

2.
Nat Commun ; 11(1): 5113, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-33037215

RESUMEN

Striatal activity is dynamically modulated by acetylcholine and dopamine, both of which are essential for basal ganglia function. Synchronized pauses in the activity of striatal cholinergic interneurons (ChINs) are correlated with elevated activity of midbrain dopaminergic neurons, whereas synchronous firing of ChINs induces local release of dopamine. The mechanisms underlying ChIN synchronization and its interplay with dopamine release are not fully understood. Here we show that polysynaptic inhibition between ChINs is a robust network motif and instrumental in shaping the network activity of ChINs. Action potentials in ChINs evoke large inhibitory responses in multiple neighboring ChINs, strong enough to suppress their tonic activity. Using a combination of optogenetics and chemogenetics we show the involvement of striatal tyrosine hydroxylase-expressing interneurons in mediating this inhibition. Inhibition between ChINs is attenuated by dopaminergic midbrain afferents acting presynaptically on D2 receptors. Our results present a novel form of interaction between striatal dopamine and acetylcholine dynamics.


Asunto(s)
Neuronas Colinérgicas/metabolismo , Cuerpo Estriado/citología , Interneuronas/metabolismo , Inhibición Neural/fisiología , Transmisión Sináptica/fisiología , Acetilcolina/fisiología , Animales , Condicionamiento Clásico , Cuerpo Estriado/fisiología , Dopamina , Femenino , Masculino , Mesencéfalo/citología , Mesencéfalo/fisiología , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Placa-Clamp , Receptores de Dopamina D2/metabolismo , Recompensa
3.
J Neuroendocrinol ; 32(11): e12881, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32803906

RESUMEN

The secretion of prolactin from the pituitary is negatively controlled by tuberoinfundibular dopamine (TIDA) neurones. The electrical properties of TIDA cells have recently been identified as a modulatory target of neurotransmitters and hormones in the lactotrophic axis. The role of the GABAB receptor in this control has received little attention, yet is of particular interest because it may act as a TIDA neurone autoreceptor. Here, this issue was explored in a spontaneously active rat TIDA in vitro slice preparation using whole-cell recordings. Application of the GABAB receptor agonist, baclofen, dose-dependently slowed down or abolished the network oscillations typical of this preparation. Pharmacological manipulations identify the underlying mechanism as an outward current mediated by G-protein-coupled inwardly rectifying K+ -like channels. In addition to this postsynaptic modulation, we describe a presynaptic modulation where GABAB receptors restrain the release of glutamate and GABA onto TIDA neurones. Our data identify both pre- and postsynaptic modulation of TIDA neurones by GABAB receptors that may play a role in the neuronal network control of pituitary prolactin secretion and lactation.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Células Neuroendocrinas/metabolismo , Receptores de GABA-B/metabolismo , Receptores Presinapticos/metabolismo , Sinapsis/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Baclofeno/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Fenómenos Electrofisiológicos , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/efectos de los fármacos , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Agonistas del GABA/farmacología , Masculino , Células Neuroendocrinas/efectos de los fármacos , Técnicas de Placa-Clamp , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Canales de Potasio de Rectificación Interna/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de GABA-B/efectos de los fármacos , Receptores Presinapticos/efectos de los fármacos , Sinapsis/efectos de los fármacos
4.
Cell ; 182(4): 960-975.e15, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32763155

RESUMEN

Parental behavior is pervasive throughout the animal kingdom and essential for species survival. However, the relative contribution of the father to offspring care differs markedly across animals, even between related species. The mechanisms that organize and control paternal behavior remain poorly understood. Using Sprague-Dawley rats and C57BL/6 mice, two species at opposite ends of the paternal spectrum, we identified that distinct electrical oscillation patterns in neuroendocrine dopamine neurons link to a chain of low dopamine release, high circulating prolactin, prolactin receptor-dependent activation of medial preoptic area galanin neurons, and paternal care behavior in male mice. In rats, the same parameters exhibit inverse profiles. Optogenetic manipulation of these rhythms in mice dramatically shifted serum prolactin and paternal behavior, whereas injecting prolactin into non-paternal rat sires triggered expression of parental care. These findings identify a frequency-tuned brain-endocrine-brain circuit that can act as a gain control system determining a species' parental strategy.


Asunto(s)
Dopamina/metabolismo , Hipotálamo/fisiología , Neuronas/fisiología , Conducta Paterna/fisiología , Animales , Encéfalo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Optogenética , Técnicas de Placa-Clamp , Prolactina/sangre , Ratas , Ratas Sprague-Dawley , Receptores de Prolactina/deficiencia , Receptores de Prolactina/genética , Receptores de Prolactina/metabolismo
5.
J Neurosci ; 40(16): 3203-3216, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32209609

RESUMEN

Giving birth triggers a wide repertoire of physiological and behavioral changes in the mother to enable her to feed and care for her offspring. These changes require coordination and are often orchestrated from the CNS, through as of yet poorly understood mechanisms. A neuronal population with a central role in puerperal changes is the tuberoinfundibular dopamine (TIDA) neurons that control release of the pituitary hormone, prolactin, which triggers key maternal adaptations, including lactation and maternal care. Here, we used Ca2+ imaging on mice from both sexes and whole-cell recordings on female mouse TIDA neurons in vitro to examine whether they adapt their cellular and network activity according to reproductive state. In the high-prolactin state of lactation, TIDA neurons shift to faster membrane potential oscillations, a reconfiguration that reverses upon weaning. During the estrous cycle, however, which includes a brief, but pronounced, prolactin peak, oscillation frequency remains stable. An increase in the hyperpolarization-activated mixed cation current, Ih, possibly through unmasking as dopamine release drops during nursing, may partially explain the reconfiguration of TIDA rhythms. These findings identify a reversible plasticity in hypothalamic network activity that can serve to adapt the dam for motherhood.SIGNIFICANCE STATEMENT Motherhood requires profound behavioral and physiological adaptations to enable caring for offspring, but the underlying CNS changes are poorly understood. Here, we show that, during lactation, neuroendocrine dopamine neurons, the "TIDA" cells that control prolactin secretion, reorganize their trademark oscillations to discharge in faster frequencies. Unlike previous studies, which typically have focused on structural and transcriptional changes during pregnancy and lactation, we demonstrate a functional switch in activity and one that, distinct from previously described puerperal modifications, reverses fully on weaning. We further provide evidence that a specific conductance (Ih) contributes to the altered network rhythm. These findings identify a new facet of maternal brain plasticity at the level of membrane properties and consequent ensemble activity.


Asunto(s)
Núcleo Arqueado del Hipotálamo/fisiología , Neuronas Dopaminérgicas/fisiología , Lactancia/fisiología , Red Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Potenciales de Acción/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Transgénicos
6.
eNeuro ; 6(3)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31097625

RESUMEN

Reward-related behavior is complex and its dysfunction correlated with neuropsychiatric illness. Dopamine (DA) neurons of the ventral tegmental area (VTA) have long been associated with different aspects of reward function, but it remains to be disentangled how distinct VTA DA neurons contribute to the full range of behaviors ascribed to the VTA. Here, a recently identified subtype of VTA neurons molecularly defined by NeuroD6 (NEX1M) was addressed. Among all VTA DA neurons, less than 15% were identified as positive for NeuroD6. In addition to dopaminergic markers, sparse NeuroD6 neurons expressed the vesicular glutamate transporter 2 (Vglut2) gene. To achieve manipulation of NeuroD6 VTA neurons, NeuroD6(NEX)-Cre-driven mouse genetics and optogenetics were implemented. First, expression of vesicular monoamine transporter 2 (VMAT2) was ablated to disrupt dopaminergic function in NeuroD6 VTA neurons. Comparing Vmat2lox/lox;NEX-Cre conditional knock-out (cKO) mice with littermate controls, it was evident that baseline locomotion, preference for sugar and ethanol, and place preference upon amphetamine-induced and cocaine-induced conditioning were similar between genotypes. However, locomotion upon repeated psychostimulant administration was significantly elevated above control levels in cKO mice. Second, optogenetic activation of NEX-Cre VTA neurons was shown to induce DA release and glutamatergic postsynaptic currents within the nucleus accumbens. Third, optogenetic stimulation of NEX-Cre VTA neurons in vivo induced significant place preference behavior, while stimulation of VTA neurons defined by Calretinin failed to cause a similar response. The results show that NeuroD6 VTA neurons exert distinct regulation over specific aspects of reward-related behavior, findings that contribute to the current understanding of VTA neurocircuitry.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Estimulantes del Sistema Nervioso Central/administración & dosificación , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/fisiología , Proteínas del Tejido Nervioso/fisiología , Recompensa , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/fisiología , Anfetamina/administración & dosificación , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cocaína/administración & dosificación , Cuerpo Estriado/metabolismo , Neuronas Dopaminérgicas/metabolismo , Etanol/administración & dosificación , Femenino , Locomoción/efectos de los fármacos , Masculino , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Optogenética , ARN Mensajero/metabolismo , Área Tegmental Ventral/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/genética , Proteínas de Transporte Vesicular de Monoaminas/fisiología
7.
J Neurosci ; 39(21): 4009-4022, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-30782976

RESUMEN

The relationship between neuronal impulse activity and neurotransmitter release remains elusive. This issue is especially poorly understood in the neuroendocrine system, with its particular demands on periodically voluminous release of neurohormones at the interface of axon terminals and vasculature. A shortage of techniques with sufficient temporal resolution has hindered real-time monitoring of the secretion of the peptides that dominate among the neurohormones. The lactotropic axis provides an important exception in neurochemical identity, however, as pituitary prolactin secretion is primarily under monoaminergic control, via tuberoinfundibular dopamine (TIDA) neurons projecting to the median eminence (ME). Here, we combined electrical or optogenetic stimulation and fast-scan cyclic voltammetry to address dopamine release dynamics in the male mouse TIDA system. Imposing different discharge frequencies during brief (3 s) stimulation of TIDA terminals in the ME revealed that dopamine output is maximal at 10 Hz, which was found to parallel the TIDA neuron action potential frequency distribution during phasic discharge. Over more sustained stimulation periods (150 s), maximal output occurred at 5 Hz, similar to the average action potential firing frequency of tonically active TIDA neurons. Application of the dopamine transporter blocker, methylphenidate, significantly increased dopamine levels in the ME, supporting a functional role of the transporter at the neurons' terminals. Lastly, TIDA neuron stimulation at the cell body yielded perisomatic release of dopamine, which may contribute to an ultrafast negative feedback mechanism to constrain TIDA electrical activity. Together, these data shed light on how spiking patterns in the neuroendocrine system translate to vesicular release toward the pituitary and identify how dopamine dynamics are controlled in the TIDA system at different cellular compartments.SIGNIFICANCE STATEMENT A central question in neuroscience is the complex relationship between neuronal discharge activity and transmitter release. By combining optogenetic stimulation and voltammetry, we address this issue in dopamine neurons of the neuroendocrine system, which faces particular spatiotemporal demands on exocytotic release; large amounts of neurohormone need to be secreted into the portal capillaries with precise timing to adapt to physiological requirements. Our data show that release is maximal around the neurons' default firing frequency. We further provide support for functional dopamine transport at the neurovascular terminals, shedding light on a long-standing controversy about the existence of neuroendocrine transmitter reuptake. Finally, we show that dopamine release occurs also at the somatodendritic level, providing a substrate for an ultrashort autoregulatory feedback loop.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
8.
Endocrinology ; 160(3): 522-533, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30668693

RESUMEN

Kisspeptin has been shown to stimulate prolactin secretion. We investigated whether kisspeptin acts through the Kiss1 receptor (Kiss1r) to regulate dopamine and prolactin. Initially, we evaluated prolactin response in a Kiss1r-deficient mouse line, in which Kiss1r had been knocked into GnRH neurons (Kiss1r-/-R). Intracerebroventricular kisspeptin-10 (Kp-10) increased prolactin release in wild-type but not in Kiss1r-/-R female mice. In ovariectomized, estradiol-treated rats, the Kiss1r antagonist kisspeptin-234 abolished the Kp-10-induced increase in prolactin release but failed to prevent the concomitant reduction in the activity of tuberoinfundibular dopaminergic (TIDA) neurons, as determined by the 3,4-dihydroxyphenylacetic acid/dopamine ratio in the median eminence. Using whole-cell patch clamp recordings in juvenile male rats, we found no direct effect of Kp-10 on the electrical activity of TIDA neurons. In addition, dual-label in situ hybridization in the hypothalamus of female rats showed that Kiss1r is expressed in the periventricular nucleus of the hypothalamus (Pe) and arcuate nucleus of the hypothalamus (ARC) but not in tyrosine hydroxylase (Th)-expressing neurons. Kisspeptin also has affinity for the neuropeptide FF receptor 1 (Npffr1), which was expressed in the majority of Pe dopaminergic neurons but only in a low proportion of TIDA neurons in the ARC. Our findings demonstrate that Kiss1r is necessary to the effect of kisspeptin on prolactin secretion, although TIDA neurons lack Kiss1r and are electrically unresponsive to kisspeptin. Thus, kisspeptin is likely to stimulate prolactin secretion via Kiss1r in nondopaminergic neurons, whereas the colocalization of Npffr1 and Th suggests that Pe dopaminergic neurons may play a role in the kisspeptin-induced inhibition of dopamine release.


Asunto(s)
Dopamina/metabolismo , Kisspeptinas/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Prolactina/metabolismo , Receptores de Kisspeptina-1/metabolismo , Animales , Neuronas Dopaminérgicas/fisiología , Femenino , Masculino , Ratones Noqueados , Ratas Wistar , Receptores de Neuropéptido/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
9.
Nat Neurosci ; 21(6): 834-842, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29802391

RESUMEN

Intermale aggression is used to establish social rank. Several neuronal populations have been implicated in aggression, but the circuit mechanisms that shape this innate behavior and coordinate its different components (including attack execution and reward) remain elusive. We show that dopamine transporter-expressing neurons in the hypothalamic ventral premammillary nucleus (PMvDAT neurons) organize goal-oriented aggression in male mice. Activation of PMvDAT neurons triggers attack behavior; silencing these neurons interrupts attacks. Regenerative PMvDAT membrane conductances interacting with recurrent and reciprocal excitation explain how a brief trigger can elicit a long-lasting response (hysteresis). PMvDAT projections to the ventrolateral part of the ventromedial hypothalamic and the supramammillary nuclei control attack execution and aggression reward, respectively. Brief manipulation of PMvDAT activity switched the dominance relationship between males, an effect persisting for weeks. These results identify a network structure anchored in PMvDAT neurons that organizes aggressive behavior and, as a consequence, determines intermale hierarchy.


Asunto(s)
Agresión/fisiología , Jerarquia Social , Red Nerviosa/fisiología , Animales , Ansiedad/psicología , Conducta Animal , Cocaína/farmacología , Condicionamiento Operante/efectos de los fármacos , Inhibidores de Captación de Dopamina/farmacología , Neuronas Dopaminérgicas/fisiología , Ácido Glutámico/fisiología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Conducción Nerviosa/fisiología , Neuronas/metabolismo , Optogenética , Recompensa , Núcleo Hipotalámico Ventromedial/citología , Núcleo Hipotalámico Ventromedial/metabolismo
10.
Elife ; 72018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29722649

RESUMEN

Electrical junctions are widespread within the mammalian CNS. Yet, their role in organizing neuronal ensemble activity remains incompletely understood. Here, in a functionally well-characterized system - neuroendocrine tuberoinfundibular dopamine (TIDA) neurons - we demonstrate a striking species difference in network behavior: rat TIDA cells discharge in highly stereotyped, robust, synchronized slow oscillations, whereas mouse oscillations are faster, flexible and show substantial cell-to-cell variability. We show that these distinct operational modes are explained by the presence of strong TIDA-TIDA gap junction coupling in the rat, and its complete absence in the mouse. Both species, however, encompass a similar heterogeneous range of intrinsic resonance frequencies, suggesting similar network building blocks. We demonstrate that gap junctions select and impose the slow network rhythm. These data identify a role for electrical junctions in determining oscillation frequency and show how related species can rely on distinct network strategies to accomplish adaptive control of hormone release.


Asunto(s)
Potenciales de Acción , Relojes Biológicos , Uniones Comunicantes/metabolismo , Red Nerviosa/fisiología , Neuronas/fisiología , Animales , Ratones , Ratas
11.
Cereb Cortex ; 28(8): 2711-2724, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28981614

RESUMEN

The neuropeptide, neurotensin (NT), inhibits UP state generation in the cerebral cortex and temporally restricts the response to thalamic input, likely by a generalized increase in inhibition. To investigate the cellular and circuit substrate(s) for how a neuropeptide can shift the balance between cortical excitation and inhibition, we performed whole-cell recordings on slice preparations from mice expressing enhanced green fluorescent protein under control of the promoter for the homeobox gene, lhx6 (lhx6-EGFP mice). These mice identify the 2 largest classes of cortical interneurons; FS and low-threshold-spiking inhibitory neurons. In the presence of NT, both types of lhx6-EGFP neurons were excited through a direct, Na+-dependent depolarization, and through an increase in synaptic excitation. Paired recordings identified cortical white matter (WM) neurons as a source of this excitatory input, which was strengthened in the presence of NT. NT-driven increased synaptic input caused a functional decorrelation of gap junction transmission between lhx6-EGFP neuron pairs. Finally, the synaptic transmission between pyramidal cells and lhx6-EGFP neurons was modulated by addition of NT in favor of stronger inhibition and weaker excitation. These findings demonstrate the existence and functional consequences of an intracortical WM neuron projection, and suggest mechanisms underlying NT-induced promotion of wakefulness.


Asunto(s)
Corteza Cerebral/citología , Neuronas/fisiología , Neurotensina/metabolismo , Sustancia Blanca/citología , Potenciales de Acción/fisiología , Animales , Proteínas de Unión al Calcio/metabolismo , Canfanos/farmacología , Proteínas de Unión al ADN/metabolismo , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Masculino , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Inhibición Neural , Neuronas/efectos de los fármacos , Neurotransmisores/farmacología , Nucleobindinas , Técnicas de Placa-Clamp , Pirazoles/farmacología , Quinolinas/farmacología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Cell Rep ; 19(10): 1977-1986, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28591570

RESUMEN

The role of neurotrophic factors as endogenous survival proteins for brain neurons remains contentious. In the cerebellum, the signals controlling survival of molecular layer interneurons (MLIs) are unknown, and direct evidence for the requirement of a full complement of MLIs for normal cerebellar function and motor learning has been lacking. Here, we show that Purkinje cells (PCs), the target of MLIs, express the neurotrophic factor GDNF during MLI development and survival of MLIs depends on GDNF receptors GFRα1 and RET. Conditional mutant mice lacking either receptor lose a quarter of their MLIs, resulting in compromised synaptic inhibition of PCs, increased PC firing frequency, and abnormal acquisition of eyeblink conditioning and vestibulo-ocular reflex performance, but not overall motor activity or coordination. These results identify an endogenous survival mechanism for MLIs and reveal the unexpected vulnerability and selective requirement of MLIs in the control of cerebellar-dependent motor learning.


Asunto(s)
Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Aprendizaje/fisiología , Actividad Motora/fisiología , Proteínas Proto-Oncogénicas c-ret/metabolismo , Células de Purkinje/metabolismo , Animales , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Ratones , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-ret/genética , Células de Purkinje/citología
13.
Sci Rep ; 7: 41535, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28145492

RESUMEN

Hypocretin/Orexin (H/O) neurons of the lateral hypothalamus are compelling modulator candidates for the chronobiology of neuroendocrine output and, as a consequence, hormone release from the anterior pituitary. Here we investigate the effects of H/O peptides upon tuberoinfundibular dopamine (TIDA) neurons - cells which control, via inhibition, the pituitary secretion of prolactin. In whole cell recordings performed in male rat hypothalamic slices, application of H/O-A, as well as H/O-B, excited oscillating TIDA neurons, inducing a reversible depolarising switch from phasic to tonic discharge. The H/O-induced inward current underpinning this effect was post-synaptic (as it endured in the presence of tetrodotoxin), appeared to be carried by a Na+-dependent transient receptor potential-like channel (as it was blocked by 2-APB and was diminished by removal of extracellular Na+), and was a consequence of OX2R receptor activation (as it was blocked by the OX2R receptor antagonist TCS OX2 29, but not the OX1R receptor antagonist SB 334867). Application of the hormone, melatonin, failed to alter TIDA membrane potential or oscillatory activity. This first description of the electrophysiological effects of H/Os upon the TIDA network identifies cellular mechanisms that may contribute to the circadian rhythmicity of prolactin secretion.


Asunto(s)
Cationes/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/fisiología , Receptores de Orexina/metabolismo , Orexinas/farmacología , Potenciales Sinápticos/efectos de los fármacos , Animales , Compuestos de Boro/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Hipotálamo/metabolismo , Inmunohistoquímica , Masculino , Melatonina/metabolismo , Melatonina/farmacología , Sistemas Neurosecretores/efectos de los fármacos , Sistemas Neurosecretores/fisiología , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Ratas , Sodio/metabolismo , Canales de Potencial de Receptor Transitorio/antagonistas & inhibidores
14.
Cereb Cortex ; 27(4): 2671-2685, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-27095826

RESUMEN

Cortical network activity correlates with vigilance state: Deep sleep is characterized by slow, synchronized oscillations, whereas desynchronized, stochastic discharge is typical of the waking state. Neuropeptides, such as orexin and substance P but also neurotensin (NT), promote arousal. Relatively little is known about if NT can directly affect the cortical network, and if so, through which mechanisms and cellular targets. Here, we addressed these issues using rat in vitro cortex preparations. Following NT application specifically to deeper layers, slow oscillation activity was attenuated with a significant reduction in UP state frequency. The cortical response to thalamic stimulation exhibited enhanced temporal precision in the presence of NT, consistent with the transition in vivo from sleep to wakefulness. These changes were associated with a relative shift toward inhibition in the excitation/inhibition balance. Whole-cell recordings from layer 6 revealed presynaptically driven NT-induced inhibition of pyramidal neurons and excitation of fast-spiking interneurons. Deeper in the cortex, neurons within the white matter (WM) were strongly depolarized by NT application. The colocalization of NT and tyrosine hydroxylase immunoreactivities in deep layer fibers throughout the cortical mantle indicates mediation via dopaminergic systems. These data suggest a cortical mechanism for NT-induced wakefulness and support a role for WM neurons in state control.


Asunto(s)
Corteza Cerebral/fisiología , Neuronas/fisiología , Neurotensina/metabolismo , Vigilia/fisiología , Sustancia Blanca/fisiología , Animales , Técnica del Anticuerpo Fluorescente , Masculino , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley
15.
Nat Neurosci ; 20(2): 176-188, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27991900

RESUMEN

The hypothalamus contains the highest diversity of neurons in the brain. Many of these neurons can co-release neurotransmitters and neuropeptides in a use-dependent manner. Investigators have hitherto relied on candidate protein-based tools to correlate behavioral, endocrine and gender traits with hypothalamic neuron identity. Here we map neuronal identities in the hypothalamus by single-cell RNA sequencing. We distinguished 62 neuronal subtypes producing glutamatergic, dopaminergic or GABAergic markers for synaptic neurotransmission and harboring the ability to engage in task-dependent neurotransmitter switching. We identified dopamine neurons that uniquely coexpress the Onecut3 and Nmur2 genes, and placed these in the periventricular nucleus with many synaptic afferents arising from neuromedin S+ neurons of the suprachiasmatic nucleus. These neuroendocrine dopamine cells may contribute to the dopaminergic inhibition of prolactin secretion diurnally, as their neuromedin S+ inputs originate from neurons expressing Per2 and Per3 and their tyrosine hydroxylase phosphorylation is regulated in a circadian fashion. Overall, our catalog of neuronal subclasses provides new understanding of hypothalamic organization and function.


Asunto(s)
Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Hipotálamo/metabolismo , Neuropéptidos/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Animales , Inmunohistoquímica/métodos , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurotransmisores/fisiología , Núcleo Supraquiasmático/metabolismo , Transmisión Sináptica/fisiología
16.
J Neurosci ; 36(28): 7392-406, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27413150

RESUMEN

UNLABELLED: Selective serotonin reuptake inhibitors (SSRIs) are commonly prescribed for depression, but sexual side effects often compromise compliance. These reproductive dysfunctions are likely mediated by elevations of the hormone prolactin. Yet, how serotonin (5-HT) and SSRIs cause changes in prolactin secretion is not known. Here, using in vitro whole-cell patch-clamp recordings, we show that 5-HT hyperpolarizes and abolishes phasic discharge in rat neuroendocrine tuberoinfundibular dopamine (TIDA) neurons, the main inhibitor of prolactin secretion. This process is underpinned by 5-HT1A receptor-mediated activation of G-protein-coupled inwardly rectifying K(+)-like currents. We further demonstrate that the SSRIs, fluoxetine and sertraline, directly suppress TIDA neuron activity through parallel effects, independent of 5-HT transmission. This inhibition involves decreased intrinsic excitability and a slowing of TIDA network rhythms. These findings indicate that SSRIs may inhibit neuroendocrine dopamine release through both 5-HT-dependent and -independent actions, providing a mechanistic explanation for, and potential molecular targets for the amelioration of, the hyperprolactinemia and sexual dysfunction associated with these drugs. SIGNIFICANCE STATEMENT: Depression affects approximately one-tenth of the population and is commonly treated with selective serotonin reuptake inhibitors (SSRIs; e.g., Prozac). Yet, many patients withdraw from SSRI therapy due to sexual side effects (e.g., infertility, menstrual disturbances, and impotence). Although it is generally accepted that sexual side effects are due to the ability of these drugs to elevate blood levels of the hormone prolactin, the mechanism for this hormonal imbalance is not known. Here, we show that SSRIs can inhibit hypothalamic dopamine neurons that normally suppress the secretion of prolactin. Intriguingly this inhibition can be explained both by increased serotonin activity and also by parallel serotonin-independent actions.


Asunto(s)
Antidepresivos/farmacología , Núcleo Arqueado del Hipotálamo/citología , Neuronas Dopaminérgicas/efectos de los fármacos , Lactotrofos/efectos de los fármacos , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Serotonina/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Estimulación Eléctrica , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Técnicas In Vitro , Masculino , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Receptores de Serotonina/metabolismo , Serotonina/metabolismo , Antagonistas de la Serotonina/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Tetrahidronaftalenos/farmacología , Tetrodotoxina/farmacología , Tirosina 3-Monooxigenasa/metabolismo
17.
Cell Rep ; 15(4): 735-747, 2016 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-27149844

RESUMEN

How autoreceptors contribute to maintaining a stable output of rhythmically active neuronal circuits is poorly understood. Here, we examine this issue in a dopamine population, spontaneously oscillating hypothalamic rat (TIDA) neurons, that underlie neuroendocrine control of reproduction and neuroleptic side effects. Activation of dopamine receptors of the type 2 family (D2Rs) at the cell-body level slowed TIDA oscillations through two mechanisms. First, they prolonged the depolarizing phase through a combination of presynaptic increases in inhibition and postsynaptic hyperpolarization. Second, they extended the discharge phase through presynaptic attenuation of calcium currents and decreased synaptic inhibition. Dopamine reuptake blockade similarly reconfigured the oscillation, indicating that ambient somatodendritic transmitter concentration determines electrical behavior. In the absence of D2R feedback, however, discharge was abolished by depolarization block. These results indicate the existence of an ultra-short feedback loop whereby neuroendocrine dopamine neurons tune network behavior to echoes of their own activity, reflected in ambient somatodendritic dopamine, and also suggest a mechanism for antipsychotic side effects.

18.
Neuropharmacology ; 107: 89-99, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26947946

RESUMEN

Phosphorylation of histone H3 (H3) on serine 28 (S28) at genomic regions marked by trimethylation of lysine 27 (H3K27me3) often correlates with increased expression of genes normally repressed by Polycomb group proteins (PcG). We show that amphetamine, an addictive psychostimulant, and haloperidol, a typical antipsychotic drug, increase the phosphorylation of H3 at S28 and that this effect occurs in the context of H3K27me3. The increases in H3K27me3S28p occur in distinct populations of projection neurons located in the striatum, the major component of the basal ganglia. Genetic inactivation of the protein phosphatase-1 inhibitor, dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32), reduces the phosphorylation of H3K27me3S28 produced by amphetamine and haloperidol. In contrast, knockout of the mitogen- and stress activated kinase 1 (MSK1), which is implicated in the phosphorylation of histone H3, decreases the effect of amphetamine, but not that of haloperidol. Chromatin immunoprecipitation analysis shows that amphetamine and haloperidol increase the phosphorylation of H3K27me3S28 at the promoter regions of Atf3, Npas4 and Lipg, three genes repressed by PcG. These results identify H3K27me3S28p as a potential mediator of the effects exerted by amphetamine and haloperidol, and suggest that these drugs may act by re-activating PcG repressed target genes.


Asunto(s)
Cuerpo Estriado/metabolismo , Histonas/metabolismo , Neuronas/metabolismo , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/metabolismo , Anfetamina/farmacología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Fármacos del Sistema Nervioso Central/farmacología , Cuerpo Estriado/citología , Cuerpo Estriado/efectos de los fármacos , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Epigénesis Genética/efectos de los fármacos , Epigénesis Genética/fisiología , Haloperidol/farmacología , Histonas/genética , Lipasa/genética , Lipasa/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Vías Nerviosas/citología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Fosforilación/efectos de los fármacos , Regiones Promotoras Genéticas/efectos de los fármacos , Regiones Promotoras Genéticas/fisiología , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo
19.
J Neurosci ; 35(10): 4229-37, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25762669

RESUMEN

Milk production in the nursing mother is induced by the hormone prolactin. Its release from the anterior pituitary is generally under tonic inhibition by neuroendocrine tuberoinfundibular dopamine (TIDA) neurons of the arcuate nucleus. Successful nursing, however, requires not only production but also ejection of breast milk. This function is supported by the hormone oxytocin. Here we explored the possibility that interaction between these functionally complementary hormones is mediated by TIDA neurons. First, whole-cell patch-clamp recordings were performed on prepubertal male rat hypothalamic slices, where TIDA neurons can be identified by a robust and rhythmic membrane potential oscillation. Oxytocin induced a switch of this rhythmic activity to tonic discharge through a depolarization involving direct actions on TIDA neurons. The depolarization is sensitive to blockade of the oxytocin receptor and is mediated by a voltage-dependent inward current. This inward current has two components: a canonical transient receptor potential-like conductance in the low-voltage range, and in the high-voltage range, a Ca(2+)-dependent component. Finally, whole-cell and loose-patch recordings were also performed on slices from virgin and lactating female rats to evaluate the relevance of these findings for nursing. In these preparations, oxytocin was found to excite TIDA neurons, identified by their expression of tyrosine hydroxylase. These findings suggest that oxytocin can modulate prolactin secretion by exciting TIDA neurons, and that this may serve as a feedforward inhibition of prolactin release.


Asunto(s)
Núcleo Arqueado del Hipotálamo/citología , Neuronas Dopaminérgicas/efectos de los fármacos , Lactancia/efectos de los fármacos , Oxitócicos/farmacología , Oxitocina/farmacología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Animales Recién Nacidos , Compuestos de Boro/farmacología , Neuronas Dopaminérgicas/fisiología , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Técnicas In Vitro , Lactancia/fisiología , Oxitocina/análogos & derivados , Oxitocina/antagonistas & inhibidores , Ratas , Ratas Sprague-Dawley , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología , Tirosina 3-Monooxigenasa/metabolismo
20.
J Chem Neuroanat ; 61-62: 20-32, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25014433

RESUMEN

Calcium binding proteins (CaBPs) form a diverse group of molecules that function as signal transducers or as intracellular buffers of Ca(2+) concentration. They have been extensively used to histochemically categorize cell types throughout the brain. One region which has not yet been characterized with regard to CaBP expression is the hypothalamic arcuate nucleus, which plays a vital role in neuroendocrine control and the central regulation of energy metabolism. Using in situ hybridization and immunofluorescence, we have investigated the cellular distribution of the three CaBPs, calbindin-D28k (CB), calretinin (CR) and parvalbumin (PV) in the rat arcuate nucleus. Both mRNA and immunoreactivity was detected in the arcuate nucleus for CB - located in the medial aspects - and CR - located ventrolaterally. No PV mRNA was detected in the arcuate nucleus. Immunofluorescence results for PV were ambiguous; while one antibody detected a group of cell somata, a different antibody failed to visualize any arcuate nucleus cell profiles. Using double-labeling, neither of the examined CaBPs were observed in cells immunoreactive for the signaling molecules agouti gene-related protein, tyrosine hydroxylase, neurotensin, growth hormone-releasing hormone, somatostatin, enkephalin, dynorphin or galanin. We did, however, observe CB- and CR-immunoreactivity, in two distinct populations of neurons immunoreactive for the melanocortin peptide α-melanocyte-stimulating hormone. These data identify distinct subpopulations of arcuate neurons defined by their expression of CaBPs and provide further support for differentiation between subpopulations of anorexigenic melanocortin neurons.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Calbindina 1/biosíntesis , Calbindina 2/biosíntesis , Neuronas/metabolismo , Parvalbúminas/biosíntesis , Animales , Calbindina 1/análisis , Calbindina 2/análisis , Técnica del Anticuerpo Fluorescente , Hibridación in Situ , Masculino , Parvalbúminas/análisis , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...