Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Lancet Microbe ; 5(5): e468-e477, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38621394

RESUMEN

BACKGROUND: Sequencing of SARS-CoV-2 from rapid diagnostic tests (RDTs) can bolster viral genomic surveillance efforts; however, approaches to maximise and standardise pathogen genome recovery from RDTs remain underdeveloped. We aimed to systematically optimise the elution of genetic material from RDT components and to evaluate the efficacy of RDT sequencing for outbreak investigation. METHODS: In this laboratory and cohort-based study we seeded RDTs with inactivated SARS-CoV-2 to optimise the elution of genomic material from RDT lateral flow strips. We measured the effect of changes in buffer type, time in buffer, and rotation on PCR cycle threshold (Ct) value. We recruited individuals older than 18 years residing in the greater Boston area, MA, USA, from July 18 to Nov 5, 2022, via email advertising to students and staff at Harvard University, MA, USA, and via broad social media advertising. All individuals recruited were within 5 days of a positive diagnostic test for SARS-CoV-2; no other relevant exclusion criteria were applied. Each individual completed two RDTs and one PCR swab. On Dec 29, 2022, we also collected RDTs from a convenience sample of individuals who were positive for SARS-CoV-2 and associated with an outbreak at a senior housing facility in MA, USA. We extracted all returned PCR swabs and RDT components (ie, swab, strip, or buffer); samples with a Ct of less than 40 were subject to amplicon sequencing. We compared the efficacy of elution and sequencing across RDT brands and components and used RDT-derived sequences to infer transmission links within the outbreak at the senior housing facility. We conducted metagenomic sequencing of negative RDTs from symptomatic individuals living in the senior housing facility. FINDINGS: Neither elution duration of greater than 10 min nor rotation during elution impacted viral titres. Elution in Buffer AVL (Ct=31·4) and Tris-EDTA Buffer (Ct=30·8) were equivalent (p=0·34); AVL outperformed elution in lysis buffer and 50% lysis buffer (Ct=40·0, p=0·0029 for both) as well as Universal Viral Transport Medium (Ct=36·7, p=0·079). Performance of RDT strips was poorer than that of matched PCR swabs (mean Ct difference 10·2 [SD 4·3], p<0·0001); however, RDT swabs performed similarly to PCR swabs (mean Ct difference 4·1 [5·2], p=0·055). No RDT brand significantly outperformed another. Across sample types, viral load predicted the viral genome assembly length. We assembled greater than 80% complete genomes from 12 of 17 RDT-derived swabs, three of 18 strips, and four of 11 residual buffers. We generated outbreak-associated SARS-CoV-2 genomes using both amplicon and metagenomic sequencing and identified multiple introductions of the virus that resulted in downstream transmission. INTERPRETATION: RDT-derived swabs are a reasonable alternative to PCR swabs for viral genomic surveillance and outbreak investigation. RDT-derived lateral flow strips yield accurate, but significantly fewer, viral reads than matched PCR swabs. Metagenomic sequencing of negative RDTs can identify viruses that might underlie patient symptoms. FUNDING: The National Science Foundation, the Hertz Foundation, the National Institute of General Medical Sciences, Harvard Medical School, the Howard Hughes Medical Institute, the US Centers for Disease Control and Prevention, the Broad Institute and the National Institute of Allergy and Infectious Diseases.


Asunto(s)
COVID-19 , Genoma Viral , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/virología , COVID-19/epidemiología , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Estudios de Cohortes , Masculino , Femenino , Adulto , Persona de Mediana Edad , Genoma Viral/genética , Anciano , Prueba de COVID-19/métodos , Pruebas Diagnósticas de Rutina/métodos , Prueba de Ácido Nucleico para COVID-19/métodos , Adulto Joven , Prueba de Diagnóstico Rápido
2.
medRxiv ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38370621

RESUMEN

Background: Households are a major setting for SARS-CoV-2 infections, but there remains a lack of knowledge regarding the dynamics of viral transmission, particularly in the setting of widespread pre-existing SARS-CoV-2 immunity and evolving variants. Methods: We conducted a prospective, case-ascertained household transmission study in the greater Boston area in March-July 2022. Anterior nasal swabs, along with clinical and demographic data, were collected for 14 days. Nasal swabs were tested for SARS-CoV-2 by PCR. Whole genome sequencing was performed on high-titer samples. Results: We enrolled 33 households in a primary analysis set, with a median age of participants of 25 years old (range 2-66); 98% of whom had received at least 2 doses of a COVID-19 vaccine. 58% of households had a secondary case during follow up and the secondary attack rate (SAR) for contacts infected was 39%. We further examined a strict analysis set of 21 households that had only 1 PCR+ case at baseline, finding an SAR of 22.5%. Genomic epidemiology further determined that there were multiple sources of infection for household contacts, including the index case and outside introductions. When limiting estimates to only highly probable transmissions given epidemiologic and genomic data, the SAR was 18.4%. Conclusions: Household contacts of a person newly diagnosed with COVID-19 are at high risk for SARS-CoV-2 infection in the following 2 weeks. This is, however, not only due to infection from the household index case, but also because the presence of an infected household member implies increased SARS-CoV-2 community transmission. Further studies to understand and mitigate household transmission are needed.

3.
medRxiv ; 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37873325

RESUMEN

Genome sequencing can offer critical insight into pathogen spread in viral outbreaks, but existing transmission inference methods use simplistic evolutionary models and only incorporate a portion of available genetic data. Here, we develop a robust evolutionary model for transmission reconstruction that tracks the genetic composition of within-host viral populations over time and the lineages transmitted between hosts. We confirm that our model reliably describes within-host variant frequencies in a dataset of 134,682 SARS-CoV-2 deep-sequenced genomes from Massachusetts, USA. We then demonstrate that our reconstruction approach infers transmissions more accurately than two leading methods on synthetic data, as well as in a controlled outbreak of bovine respiratory syncytial virus and an epidemiologically-investigated SARS-CoV-2 outbreak in South Africa. Finally, we apply our transmission reconstruction tool to 5,692 outbreaks among the 134,682 Massachusetts genomes. Our methods and results demonstrate the utility of within-host variation for transmission inference of SARS-CoV-2 and other pathogens, and provide an adaptable mathematical framework for tracking within-host evolution.

4.
Health Aff (Millwood) ; 42(3): 349-356, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36877907

RESUMEN

Throughout the COVID-19 pandemic, the US has struggled with many aspects of the public health response, from determining where transmission is occurring to building trust with communities and implementing interventions. Three factors have contributed to these challenges: insufficient local public health capacity, siloed interventions, and underuse of a cluster-based approach to outbreak response. In this article we introduce Community-based Outbreak Investigation and Response (COIR), a local public health strategy developed during the COVID-19 pandemic that addresses these shortcomings. COIR can help local public health entities conduct disease surveillance more effectively, take a more proactive and efficient approach to mitigating transmission, coordinate response efforts, build community trust, and advance equity. We offer a practitioner's lens, informed through on-the-ground experience and engagement with policy makers, to highlight the financing, workforce, data system, and information-sharing policy changes needed to scale up COIR throughout the country. COIR can enable the US public health system to develop effective solutions to many of today's public health challenges and improve the nation's preparedness for public health crises in the years to come.


Asunto(s)
COVID-19 , Salud Pública , Humanos , Pandemias/prevención & control , COVID-19/epidemiología , Brotes de Enfermedades/prevención & control , Personal Administrativo
6.
medRxiv ; 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36656774

RESUMEN

The US experienced an early and severe respiratory syncytial virus (RSV) surge in autumn 2022. Despite the pressure this has put on hospitals and care centers, the factors promoting the surge in cases are unknown. To investigate whether viral characteristics contributed to the extent or severity of the surge, we sequenced 105 RSV-positive specimens from symptomatic patients diagnosed with RSV who presented to the Massachusetts General Hospital (MGH) and its outpatient practices in the Greater Boston Area. Genomic analysis of the resulting 77 genomes (54 with >80% coverage, and 23 with >5% coverage) demonstrated that the surge was driven by multiple lineages of RSV-A (91%; 70/77) and RSV-B (9%; 7/77). Phylogenetic analysis of all US RSV-A revealed 12 clades, 4 of which contained Massachusetts and Washington genomes. These clades individually had times to most recent common ancestor (tMRCA) between 2014 and 2017, and together had a tMRCA of 2009, suggesting that they emerged well before the COVID-19 pandemic. Similarly, the RSV-B genomes had a tMRCA between 2016 and 2019. We found that the RSV-A and RSV-B genomes in our sample did not differ statistically from the estimated clock rate of the larger phylogenetic tree (10.6 and 12.4 substitutions per year, respectively). In summary, the polyphyletic nature of viral genomes sequenced in the US during the autumn 2022 surge is inconsistent with the emergence of a single, highly transmissible causal RSV lineage.

7.
Med ; 3(12): 883-900.e13, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36198312

RESUMEN

BACKGROUND: Universities are vulnerable to infectious disease outbreaks, making them ideal environments to study transmission dynamics and evaluate mitigation and surveillance measures. Here, we analyze multimodal COVID-19-associated data collected during the 2020-2021 academic year at Colorado Mesa University and introduce a SARS-CoV-2 surveillance and response framework. METHODS: We analyzed epidemiological and sociobehavioral data (demographics, contact tracing, and WiFi-based co-location data) alongside pathogen surveillance data (wastewater and diagnostic testing, and viral genomic sequencing of wastewater and clinical specimens) to characterize outbreak dynamics and inform policy. We applied relative risk, multiple linear regression, and social network assortativity to identify attributes or behaviors associated with contracting SARS-CoV-2. To characterize SARS-CoV-2 transmission, we used viral sequencing, phylogenomic tools, and functional assays. FINDINGS: Athletes, particularly those on high-contact teams, had the highest risk of testing positive. On average, individuals who tested positive had more contacts and longer interaction durations than individuals who never tested positive. The distribution of contacts per individual was overdispersed, although not as overdispersed as the distribution of phylogenomic descendants. Corroboration via technical replicates was essential for identification of wastewater mutations. CONCLUSIONS: Based on our findings, we formulate a framework that combines tools into an integrated disease surveillance program that can be implemented in other congregate settings with limited resources. FUNDING: This work was supported by the National Science Foundation, the Hertz Foundation, the National Institutes of Health, the Centers for Disease Control and Prevention, the Massachusetts Consortium on Pathogen Readiness, the Howard Hughes Medical Institute, the Flu Lab, and the Audacious Project.


Asunto(s)
COVID-19 , SARS-CoV-2 , Estados Unidos , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Brotes de Enfermedades , Universidades , Trazado de Contacto
8.
medRxiv ; 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35982651

RESUMEN

We measured viral kinetics of SARS-CoV-2 Omicron infection in 36 mRNA-vaccinated individuals, 11 of whom were treated with nirmatrelvir-ritonavir (NMV-r). We found that NMV-r was associated with greater incidence of viral rebound compared to no treatment. For those that did not rebound, NMV-r significantly reduced time to PCR conversion.

9.
MMWR Morb Mortal Wkly Rep ; 70(31): 1059-1062, 2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34351882

RESUMEN

During July 2021, 469 cases of COVID-19 associated with multiple summer events and large public gatherings in a town in Barnstable County, Massachusetts, were identified among Massachusetts residents; vaccination coverage among eligible Massachusetts residents was 69%. Approximately three quarters (346; 74%) of cases occurred in fully vaccinated persons (those who had completed a 2-dose course of mRNA vaccine [Pfizer-BioNTech or Moderna] or had received a single dose of Janssen [Johnson & Johnson] vaccine ≥14 days before exposure). Genomic sequencing of specimens from 133 patients identified the B.1.617.2 (Delta) variant of SARS-CoV-2, the virus that causes COVID-19, in 119 (89%) and the Delta AY.3 sublineage in one (1%). Overall, 274 (79%) vaccinated patients with breakthrough infection were symptomatic. Among five COVID-19 patients who were hospitalized, four were fully vaccinated; no deaths were reported. Real-time reverse transcription-polymerase chain reaction (RT-PCR) cycle threshold (Ct) values in specimens from 127 vaccinated persons with breakthrough cases were similar to those from 84 persons who were unvaccinated, not fully vaccinated, or whose vaccination status was unknown (median = 22.77 and 21.54, respectively). The Delta variant of SARS-CoV-2 is highly transmissible (1); vaccination is the most important strategy to prevent severe illness and death. On July 27, CDC recommended that all persons, including those who are fully vaccinated, should wear masks in indoor public settings in areas where COVID-19 transmission is high or substantial.* Findings from this investigation suggest that even jurisdictions without substantial or high COVID-19 transmission might consider expanding prevention strategies, including masking in indoor public settings regardless of vaccination status, given the potential risk of infection during attendance at large public gatherings that include travelers from many areas with differing levels of transmission.


Asunto(s)
COVID-19/epidemiología , COVID-19/transmisión , Aglomeración , Brotes de Enfermedades , Adolescente , Adulto , Anciano , Vacunas contra la COVID-19/administración & dosificación , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Massachusetts/epidemiología , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...