Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Front Microbiol ; 14: 1260465, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37840723

RESUMEN

Bordetella bronchiseptica is a widespread, highly infectious bacterial pathogen that causes respiratory disease in swine and increases the severity of respiratory infections caused by other viral or bacterial pathogens. However, the impact of B. bronchiseptica infection on the swine respiratory microbiota has not been thoroughly investigated. Here, we aim to assess the influence of B. bronchiseptica infection on the community structure and abundance of members of the swine nasal microbiota. To do so, the nasal microbiota of a non-infected control group and a group infected with B. bronchiseptica (BB group) were characterized prior to B. bronchiseptica strain KM22 challenge (day 0) and on selected days in the weeks following B. bronchiseptica challenge (days 1, 3, 7, 10, 14, 21, 36, and 42). Bordetella bronchiseptica was cultured from nasal samples of the BB group to assess nasal colonization. The results showed that B. bronchiseptica colonization did not persistently affect the nasal bacterial diversity of either of the treatment groups (alpha diversity). However, the bacterial community structures (beta diversity) of the two treatment groups significantly diverged on day 7 when peak colonization levels of B. bronchiseptica were detected. This divergence continued through the last sampling time point. In addition, Pasteurella, Pasteurellaceae (unclassified), Mycoplasma, Actinobacillus, Streptococcus, Escherichia-Shigella, and Prevotellaceae (unclassified) showed increased abundances in the BB group relative to the control group at various time points. This study revealed that B. bronchiseptica colonization can disturb the upper respiratory tract microbiota, and further research is warranted to assess how these disturbances can impact susceptibility to secondary infections by other respiratory pathogens.

2.
Vet Microbiol ; 284: 109841, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37542929

RESUMEN

Bordetella bronchiseptica and Streptococcus suis are widely distributed swine pathogens. B. bronchiseptica is a primary pathogen and causes atrophic rhinitis and bronchopneumonia. S. suis is a contributing agent to porcine respiratory disease complex and causes systemic diseases including arthritis, meningitis, polyserositis, and septicemia. Colonization with B. bronchiseptica has been associated with increased colonization by other pathogenic bacteria and increased disease severity with viral and bacterial pathogens. It has also been reported to predispose cesarean derived, colostrum deprived (CDCD) piglets to S. suis systemic disease. Here, we evaluated the role of B. bronchiseptica colonization on S. suis colonization, dissemination, and disease in one study using conventional pigs and another using CDCD pigs. Pigs were challenged with S. suis, B. bronchiseptica, or B. bronchiseptica followed by S. suis. Incidence of S. suis disease was not increased in either study for animals pre-inoculated with B. bronchiseptica. Nasal colonization with S. suis was increased in coinfected animals, while B. bronchiseptica was similar between mono- and co-infected animals. Although increased S. suis disease was not seen in coinfected pigs, there is evidence that B. bronchiseptica can increase colonization with S. suis, which may contribute to enhanced disease when animals are stressed or immunocompromised.


Asunto(s)
Infecciones por Bordetella , Bordetella bronchiseptica , Streptococcus suis , Enfermedades de los Porcinos , Embarazo , Femenino , Animales , Porcinos , Enfermedades de los Porcinos/microbiología , Infecciones por Bordetella/epidemiología , Infecciones por Bordetella/veterinaria , Nariz , Bacterias
3.
Vet Res ; 54(1): 38, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37131235

RESUMEN

Influenza A virus (IAV) is an important contributing pathogen of porcine respiratory disease complex (PRDC) infections. Evidence in humans has shown that IAV can disturb the nasal microbiota and increase host susceptibility to bacterial secondary infections. Few, small-scale studies have examined the impact of IAV infection on the swine nasal microbiota. To better understand the effects of IAV infection on the nasal microbiota and its potential indirect impacts on the respiratory health of the host, a larger, longitudinal study was undertaken to characterize the diversity and community composition of the nasal microbiota of pigs challenged with an H3N2 IAV. The microbiome of challenged pigs was compared with non-challenged animals over a 6-week period using 16S rRNA gene sequencing and analysis workflows to characterize the microbiota. Minimal changes to microbial diversity and community structure were seen between the IAV infected and control animals the first 10 days post-IAV infection. However, on days 14 and 21, the microbial populations were significantly different between the two groups. Compared to the control, there were several genera showing significant increases in abundance in the IAV group during acute infection, such as Actinobacillus and Streptococcus. The results here highlight areas for future investigation, including the implications of these changes post-infection on host susceptibility to secondary bacterial respiratory infections.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Microbiota , Infecciones por Orthomyxoviridae , Enfermedades de los Porcinos , Humanos , Animales , Porcinos , Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/veterinaria , Subtipo H3N2 del Virus de la Influenza A/genética , Estudios Longitudinales , ARN Ribosómico 16S/genética , Bacterias
4.
Front Vet Sci ; 9: 827082, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35296061

RESUMEN

Streptococcus equi subspecies zooepidemicus (SEZ) is a zoonotic pathogen capable of causing severe disease in many mammalian species. Historically, SEZ has not been a common cause of disease in pigs in North America; however, in 2019, SEZ caused mortality events leading to severe illness and 30-50% mortality in exposed animal groups. Because of the rapid progression of disease, it is important to investigate intervention strategies to prevent disease development. In this study, pigs were divided into four groups: (1) vaccinated with an inactivated SEZ vaccine generated from a highly mucoid 2019 mortality event isolate; (2) vaccinated with an inactivated SEZ vaccine generated from a genetically similar, non-mucoid isolate from a guinea pig; (3) and (4) sham vaccinated. Following boost vaccination, groups 1-3 were challenged with a 2019 mortality event isolate and group 4 were non-challenged controls. Antibody titers were higher for SEZ vaccinated animals than sham vaccinated animals; however, no anamnestic response was observed, and titers were lower than typically seen following the use of inactivated vaccines. Vaccination did not provide protection from disease development or mortality following challenge, which could be associated with the comparatively low antibody titers generated by vaccination. Surviving pigs also remained colonized and transmitted SEZ to naïve contact pigs 3 weeks following challenge, indicating that healthy animals can act as a source of SEZ exposure. Future investigation should evaluate different vaccine formulations, such as increased antigen load or an alternative adjuvant, that could induce a more robust adaptive immune response.

5.
Vet Microbiol ; 264: 109271, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34826647

RESUMEN

Streptococcus equi subspecies zooepidemicus (SEZ) is a commensal bacterium of horses and causes infections in mammalian species, including humans. Historically, virulent strains of SEZ caused high mortality in pigs in China and Indonesia, while disease in the U.S. was infrequent. More recently, high mortality events in sows were attributed to SEZ in North America. The SEZ isolates from these mortality events have high genetic similarity to an isolate from an outbreak in China. Taken together, this may indicate SEZ is an emerging threat to swine health. To generate a disease model and evaluate the susceptibility of healthy, conventionally raised pigs to SEZ, we challenged sows and five-month-old pigs with an isolate from a 2019 mortality event. Pigs were challenged with a genetically similar guinea pig isolate or genetically distinct horse isolate to evaluate comparative virulence. The swine isolate caused severe systemic disease in challenged pigs with 100 % mortality. Disease manifestation in sows was similar to field reports: lethargy/depression, fever, reluctance to rise, and high mortality. The guinea pig isolate also caused severe systemic disease; however, most five-month-old pigs recovered. In contrast, the horse isolate did not cause disease and was readily cleared from the respiratory tract. In conclusion, we were able to replicate disease reported in the field. The results indicate differences in virulence between isolates, with the highest virulence associated with the swine isolate. Additionally, we generated a challenge model that can be used in future research to evaluate virulence factors and disease prevention strategies.


Asunto(s)
Enfermedades de los Caballos , Infecciones Estreptocócicas , Streptococcus equi , Enfermedades de los Porcinos , Replicación Viral , Animales , Modelos Animales de Enfermedad , Femenino , Cobayas , Enfermedades de los Caballos/virología , Caballos , Infecciones Estreptocócicas/veterinaria , Infecciones Estreptocócicas/virología , Streptococcus equi/fisiología , Porcinos , Enfermedades de los Porcinos/virología , Replicación Viral/fisiología
6.
Vet Immunol Immunopathol ; 234: 110205, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33636545

RESUMEN

Glaesserella (Haemophilus) parasuis is a part of the microbiota of healthy pigs and also causes the systemic condition called Glässer's disease. G. parasuis is categorized by it capsular polysaccharide into 15 serovars. Because of the serovar and strain specific immunity generated by whole cell vaccines and the rapid onset of disease, G. parasuis has been difficult to control in the swine industry. This report investigated the protection afforded by the use of two serovar 5 isolates (Nagasaki and HS069) as whole cell, killed bacterins against homologous challenge and heterologous challenge with the serovar 1 strain 12939 to better understand bacterin generated immunity. Both bacterins induced a high antibody titer to the vaccine strain and the heterologous challenge strain. Protection was seen with both bacterins against homologous challenge; however, after heterologous challenge, the HS069 bacterin provided complete protection and all Nagasaki bacterin vaccinated animals succumbed to disease. The difference in protection appears to be due to differences in antibody specificity and the capacity of induced antibody to fix complement and opsonize G. parasuis, as shown by Western blotting and functional assays. This report shows the importance of strain selection when developing bacterin vaccines, as some strains are better able to generate heterologous protection. The difference in protection seen here can also be utilized to detect proteins of interest for subunit vaccine development.


Asunto(s)
Infecciones por Haemophilus/inmunología , Infecciones por Haemophilus/veterinaria , Haemophilus parasuis/clasificación , Haemophilus parasuis/inmunología , Inmunidad Heteróloga , Serogrupo , Enfermedades de los Porcinos/inmunología , Factores de Edad , Animales , Anticuerpos Antibacterianos/sangre , Vacunas Bacterianas/administración & dosificación , Vacunas Bacterianas/inmunología , Infecciones por Haemophilus/microbiología , Vacunas contra Haemophilus/administración & dosificación , Vacunas contra Haemophilus/inmunología , Haemophilus parasuis/aislamiento & purificación , Porcinos , Enfermedades de los Porcinos/microbiología , Vacunación , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología
7.
Front Vet Sci ; 7: 255, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32509805

RESUMEN

Oral antibiotics are a critical tool for fighting bacterial infections, yet their use can have negative consequences, such as the disturbance of healthy gut bacterial communities and the dissemination of antibiotic residues in feces. Altering antibiotic administration route may limit negative impacts on intestinal microbiota and reduce selective pressure for antimicrobial resistance genes (ARG) persistence and mobility. Thus, a study was performed in pigs to evaluate route of therapeutic oxytetracycline (oxytet) administration, an antibiotic commonly used in the U.S. swine industry, on intestinal microbial diversity and ARG abundance. Given that oral antibiotics would be in direct contact with intestinal bacteria, we hypothesized that oral administration would cause a major shift in intestinal bacterial community structure when compared to injected antibiotic. We further postulated that the impact would extend to the diversity and abundance of ARG in swine feces. At approximately 3 weeks-of-age, piglets were separated into three groups (n = 21-22 per group) with two groups receiving oxytet (one via injection and the second via feed) and a third non-medicated group. Oxytet levels in the plasma indicated injected antibiotic resulted in a spike 1 day after administration, which decreased over time, though oxytet was still detected in plasma 14 days after injection. Conversely, in-feed oxytet delivery resulted in lower but less variable oxytet levels in circulation and high concentrations in feces. Similar trends were observed in microbial community changes regardless of route of oxytet administration; however, the impact on the microbial community was more pronounced at all time points and in all samples with in-feed administration. Fecal ARG abundance was increased with in-feed administration over injected, with genes for tetracycline and aminoglycoside resistance enriched specifically in the feces of the in-feed group. Sequencing of plasmid-enriched samples revealed multiple genetic contexts for the resistance genes detected and highlighted the potential role of small plasmids in the movement of antibiotic resistance genes. The findings are informative for disease management in food animals, but also manure management and antibiotic therapy in human medicine for improved antibiotic stewardship.

8.
Pathogens ; 9(5)2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32422856

RESUMEN

Streptococcus suis is a swine pathogen and a zoonotic agent afflicting people in close contact with infected pigs or pork meat. Sporadic cases of human infections have been reported worldwide. In addition, S. suis outbreaks emerged in Asia, making this bacterium a primary health concern in this part of the globe. In pigs, S. suis disease results in decreased performance and increased mortality, which have a significant economic impact on swine production worldwide. Facing the new regulations in preventive use of antimicrobials in livestock and lack of effective vaccines, control of S. suis infections is worrisome. Increasing and sharing of knowledge on this pathogen is of utmost importance. As such, the pathogenesis and epidemiology of the infection, antimicrobial resistance, progress on diagnosis, prevention, and control were among the topics discussed during the 4th International Workshop on Streptococcus suis (held in Montreal, Canada, June 2019). This review gathers together recent findings on this important pathogen from lectures performed by lead researchers from several countries including Australia, Canada, France, Germany, Japan, Spain, Thailand, The Netherlands, UK, and USA. Finally, policies and recommendations for the manufacture, quality control, and use of inactivated autogenous vaccines are addressed to advance this important field in veterinary medicine.

9.
BMC Vet Res ; 16(1): 167, 2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32460764

RESUMEN

BACKGROUND: Glaesserella parasuis, the causative agent of Glӓsser's disease, is widespread in swine globally resulting in significant economic losses to the swine industry. Prevention of Glӓsser's disease in pigs has been plagued with an inability to design broadly protective vaccines, as many bacterin based platforms generate serovar or strain specific immunity. Subunit vaccines are of interest to provide protective immunity to multiple strains of G. parasuis. Selected proteins for subunit vaccination should be widespread, highly conserved, and surface exposed. RESULTS: Two candidate proteins for subunit vaccination (RlpB and VacJ) against G. parasuis were identified using random mutagenesis and an in vitro organ culture system. Pigs were vaccinated with recombinant RlpB and VacJ, outer membrane proteins with important contributions to cellular function and viability. Though high antibody titers to the recombinant proteins and increased interferon-γ producing cells were found in subunit vaccinated animals, the pigs were not protected from developing systemic disease. CONCLUSIONS: It appears there may be insufficient RlpB and VacJ exposed on the bacterial surface for antibody to bind, preventing high RlpB and VacJ specific antibody titers from protecting animals from G. parasuis. Additionally, this work confirms the importance of utilizing the natural host species when assessing the efficacy of vaccine candidates.


Asunto(s)
Infecciones por Haemophilus/veterinaria , Haemophilus parasuis/inmunología , Proteínas Recombinantes/inmunología , Enfermedades de los Porcinos/prevención & control , Animales , Anticuerpos Antibacterianos/sangre , Proteínas Bacterianas/inmunología , Vacunas Bacterianas/inmunología , Infecciones por Haemophilus/inmunología , Infecciones por Haemophilus/prevención & control , Vacunas contra Haemophilus/inmunología , Haemophilus parasuis/genética , Serogrupo , Sus scrofa , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/microbiología , Técnicas de Cultivo de Tejidos/veterinaria , Vacunación/veterinaria , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología
10.
Infect Immun ; 88(5)2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32094250

RESUMEN

Glaesserella (Haemophilus) parasuis is a commensal bacterium of the upper respiratory tract in pigs and also the causative agent of Glässer's disease, which causes significant morbidity and mortality in pigs worldwide. Isolates are characterized into 15 serovars by their capsular polysaccharide, which has shown a correlation with isolate pathogenicity. To investigate the role the capsule plays in G. parasuis virulence and host interaction, a capsule mutant of the serovar 5 strain HS069 was generated (HS069Δcap) through allelic exchange following natural transformation. HS069Δcap was unable to cause signs of systemic disease during a pig challenge study and had increased sensitivity to complement killing and phagocytosis by alveolar macrophages. Compared with the parent strain, HS069Δcap produced more robust biofilm and adhered equivalently to 3D4/31 cells; however, it was unable to persistently colonize the nasal cavity of inoculated pigs, with all pigs clearing HS069Δcap by 5 days postchallenge. Our results indicate the importance of the capsular polysaccharide to G. parasuis virulence as well as nasal colonization in pigs.


Asunto(s)
Haemophilus parasuis/genética , Animales , Biopelículas , Infecciones por Haemophilus/microbiología , Macrófagos Alveolares/microbiología , Fagocitosis/fisiología , Porcinos , Enfermedades de los Porcinos/microbiología , Virulencia/genética
11.
Front Microbiol ; 11: 620843, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33574803

RESUMEN

Streptococcus suis is a zoonotic bacterial swine pathogen causing substantial economic and health burdens to the pork industry. Mechanisms used by S. suis to colonize and cause disease remain unknown and vaccines and/or intervention strategies currently do not exist. Studies addressing virulence mechanisms used by S. suis have been complicated because different isolates can cause a spectrum of disease outcomes ranging from lethal systemic disease to asymptomatic carriage. The objectives of this study were to evaluate the virulence capacity of nine United States S. suis isolates following intranasal challenge in swine and then perform comparative genomic analyses to identify genomic attributes associated with swine-virulent phenotypes. No correlation was found between the capacity to cause disease in swine and the functional characteristics of genome size, serotype, sequence type (ST), or in vitro virulence-associated phenotypes. A search for orthologs found in highly virulent isolates and not found in non-virulent isolates revealed numerous predicted protein coding sequences specific to each category. While none of these predicted protein coding sequences have been previously characterized as potential virulence factors, this analysis does provide a reliable one-to-one assignment of specific genes of interest that could prove useful in future allelic replacement and/or functional genomic studies. Collectively, this report provides a framework for future allelic replacement and/or functional genomic studies investigating genetic characteristics underlying the spectrum of disease outcomes caused by S. suis isolates.

12.
Vet Microbiol ; 237: 108386, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31526488

RESUMEN

The impacts of antibiotic treatment and dosing regimen of an antibiotic on the swine respiratory microbiota are poorly defined. To begin to address this, this study characterized the impact of oxytetracycline administration, given either parenterally or in feed, on the diversity of the nasal and tonsil microbiotas of post-weaned pigs over a two-week period. One group received a single intramuscular injection (IM) of oxytetracycline, the second was treated with oxytetracycline mixed in feed (IF), and the control group received non-medicated (NON) feed. Nasal samples were collected on days 0 (before start of treatment), 4, 7, 11, and 14. Tonsil tissue samples were collected from a subset of pigs selected for necropsy on days 4, 7, and 14. The results showed that the tonsil microbiota was stable regardless of antibiotic treatment. In contrast, the nasal bacterial diversity decreased for both oxytetracycline-treated groups compared to NON. The IF group also exhibited decreased diversity on more days than the IM group. The nasal bacterial community structures of the antibiotic treatment groups were significantly different from the NON group that persisted from day 4 until day 7 for the IM group, and up until day 11 for the IF group. This included relative increased abundances of Actinobacillus and Streptococcus, and relative decreased abundances of multiple commensal genera. The microbiota of the IF group was also more disturbed than the microbiota of the IM group, relative to NON. This study revealed that short-term exposure to broad-spectrum antibiotics like oxytetracycline can disturb the upper respiratory microbiota, and the dosing regimen has differential effects on the microbiota.


Asunto(s)
Bacterias/clasificación , Bacterias/efectos de los fármacos , Microbiota/efectos de los fármacos , Nariz/microbiología , Oxitetraciclina/farmacología , Porcinos/microbiología , Animales , Relación Dosis-Respuesta a Droga , Oxitetraciclina/administración & dosificación
13.
PLoS One ; 14(8): e0220365, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31386681

RESUMEN

Glaesserella parasuis is the cause of Glӓsser's disease in pigs and is a significant contributor to post-weaning mortality in the swine industry. Prevention of G. parasuis disease relies primarily on bacterin vaccines, which have shown good homologous protection and variable heterologous protection. Bacterin production involves large scale growth of the bacteria and proteins produced during the proliferation phase of production become important antigens that stimulate the immune response. In order to evaluate genes activated during G. parasuis growth on different media substrates, the transcriptome of broth and agar grown G. parasuis strain 29755 were sequenced and compared. The transcription of most purported virulence genes were comparable between broth and agar grown G. parasuis; however, four virulence-associated genes, including ompA and vapD, had elevated expression under agar growth, while six virulence-associate genes had elevated expression during broth growth, including several protease genes. Additionally, there were metabolic shifts toward increased protein and lipid production and increased cellular division in broth grown G. parasuis. The results contribute to the understanding of how growth substrate alters gene transcription and protein expression, which may impact vaccine efficacy if immunogens important to the protective immune response are not produced under specific in vitro conditions. While the results of this work are unable to fully elucidate which growth medium presents a transcriptome more representative of in vivo samples or best suited for bacterin production, it forms a foundation that can be used for future comparisons and provides a better understanding of the metabolic differences in broth and agar grown bacteria.


Asunto(s)
Agar/farmacología , Medios de Cultivo/farmacología , Perfilación de la Expresión Génica , Haemophilus parasuis/genética , Animales , Proteínas Bacterianas , Vacunas Bacterianas , Proliferación Celular/efectos de los fármacos , Genes Bacterianos , Haemophilus parasuis/crecimiento & desarrollo , Lípidos/biosíntesis , Biosíntesis de Proteínas/efectos de los fármacos , Porcinos , Virulencia/genética
14.
Vet Microbiol ; 231: 116-119, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30955798

RESUMEN

The use of immunomodulators is a promising alternative to the use of antibiotics for therapeutic, prophylactic, and metaphylactic use to prevent and combat infectious disease. Previously we demonstrated a replication-defective adenovirus vector that expresses porcine granulocyte colony-stimulating factor (G-CSF) elicited a sustained neutrophilia, lasting nearly 3 weeks, which may be beneficial to prevent bacterial diseases during times of peak incidence. In a pilot study using the vectored G-CSF with a Caesarian-derived, colostrum-deprived (CDCD) pig model of Streptococcus suis disease, only 1 of 4 pigs given G-CSF developed disease, while 3 of 4 non-treated pigs developed Streptococcal disease. In a subsequent study using a larger number of pigs, although there was no difference in overall survival, there was a longer mean survival time in G-CSF treated pigs. S. suis infection is more severe in CDCD pigs than conventionally raised pigs, consequently results in the field may be superior to the ones reported in this study. Although there were positive effects from the use of G-CSF in this study, further research is needed to determine if improved clinical outcomes could be achieved under field conditions and whether the use of G-CSF in pigs to induce a sustained increase in circulating neutrophil numbers may be useful as an adjunct to antibiotics to diminish the severity of Streptococcal disease, especially during times of stress and pathogen exposure such as post-weaning.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Neutrófilos/inmunología , Infecciones Estreptocócicas/tratamiento farmacológico , Streptococcus suis/efectos de los fármacos , Porcinos/inmunología , Adenoviridae/genética , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Femenino , Vectores Genéticos , Inmunomodulación , Inyecciones Intramusculares , Proyectos Piloto , Embarazo , Infecciones Estreptocócicas/mortalidad , Tasa de Supervivencia , Porcinos/microbiología
15.
Microbiology (Reading) ; 165(2): 163-173, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30543506

RESUMEN

The porcine pathogen Streptococcus suis colonizes the upper respiratory tracts of pigs, potentially causing septicaemia, meningitis and death, thus placing a severe burden on the agricultural industry worldwide. It is also a zoonotic pathogen that is known to cause systemic infections and meningitis in humans. Understanding how S. suis colonizes and interacts with its hosts is relevant for future strategies of drug and vaccine development. As with other Gram-positive bacteria, S. suis utilizes enzymes known as sortases to attach specific proteins bearing cell wall sorting signals to its surface, where they can play a role in host-pathogen interactions. The surface proteins of bacteria are often important in adhesion to and invasion of host cells. In this study, markerless in-frame deletion mutants of the housekeeping sortase srtA and the two pilus-associated sortases, srtB and srtF, were generated and their importance in S. suis infections was investigated. We found that all three of these sortases are essential to disease in pigs, concluding that their cognate-sorted proteins may also be useful in protecting pigs against infection.


Asunto(s)
Aminoaciltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Cisteína Endopeptidasas/metabolismo , Infecciones Estreptocócicas/veterinaria , Streptococcus suis/patogenicidad , Enfermedades de los Porcinos/microbiología , Aminoaciltransferasas/genética , Animales , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Pared Celular/metabolismo , Cisteína Endopeptidasas/genética , Modelos Animales de Enfermedad , Inmunoglobulina G/sangre , Mariposas Nocturnas , Polisacáridos Bacterianos/genética , Polisacáridos Bacterianos/metabolismo , Eliminación de Secuencia , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/patología , Streptococcus suis/genética , Streptococcus suis/crecimiento & desarrollo , Streptococcus suis/inmunología , Porcinos , Enfermedades de los Porcinos/patología , Virulencia/genética
16.
Front Immunol ; 9: 2255, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30337924

RESUMEN

Intranasally administered live-attenuated influenza virus (LAIV) vaccines provide significant protection against heterologous influenza A virus (IAV) challenge. However, LAIV administration can modify the bacterial microbiota in the upper respiratory tract, including alterations in species that cause pneumonia. We sought to evaluate the effect of Bordetella bronchiseptica colonization on LAIV immunogenicity and efficacy in swine, and the impact of LAIV and IAV challenge on B. bronchiseptica colonization and disease. LAIV immunogenicity was not significantly impacted by B. bronchiseptica colonization, but protective efficacy against heterologous IAV challenge in the upper respiratory tract was impaired. Titers of IAV in the nose and trachea of pigs that received LAIV were significantly reduced when compared to non-vaccinated, challenged controls, regardless of B. bronchiseptica infection. Pneumonia scores were higher in pigs colonized with B. bronchiseptica and challenged with IAV, but this was regardless of LAIV vaccination status. While LAIV vaccination provided significant protection against heterologous IAV challenge, the protection was not sterilizing and IAV replicated in the respiratory tract of all LAIV vaccinated pig. The interaction between IAV, B. bronchiseptica, and host led to development of acute-type B. bronchiseptica lesions in the lung. Thus, the data presented do not negate the efficacy of LAIV vaccination, but instead indicate that controlling B. bronchiseptica colonization in swine could limit the negative interaction between IAV and Bordetella on swine health.


Asunto(s)
Bordetella bronchiseptica/inmunología , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Infecciones por Orthomyxoviridae/inmunología , Administración Intranasal , Animales , Protección Cruzada/inmunología , Humanos , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/fisiología , Vacunas contra la Influenza/administración & dosificación , Gripe Humana/prevención & control , Gripe Humana/virología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/virología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología , Evaluación de Resultado en la Atención de Salud , Porcinos , Vacunación/métodos , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología
17.
J Virol ; 92(22)2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30185589

RESUMEN

Influenza A viruses in swine (IAV-S) circulating in the United States of America are phylogenetically and antigenically distinct. A human H3 hemagglutinin (HA) was introduced into the IAV-S gene pool in the late 1990s, sustained continued circulation, and evolved into five monophyletic genetic clades, H3 clades IV-A to -E, after 2009. Across these phylogenetic clades, distinct antigenic clusters were identified, with three clusters (cyan, red, and green antigenic cluster) among the most frequently detected antigenic phenotypes (Abente EJ, Santos J, Lewis NS, Gauger PC, Stratton J, et al. J Virol 90:8266-8280, 2016, https://doi.org/10.1128/JVI.01002-16). Although it was demonstrated that antigenic diversity of H3N2 IAV-S was associated with changes at a few amino acid positions in the head of the HA, the implications of this diversity for vaccine efficacy were not tested. Using antigenically representative H3N2 viruses, we compared whole inactivated virus (WIV) and live-attenuated influenza virus (LAIV) vaccines for protection against challenge with antigenically distinct H3N2 viruses in pigs. WIV provided partial protection against antigenically distinct viruses but did not prevent virus replication in the upper respiratory tract. In contrast, LAIV provided complete protection from disease and virus was not detected after challenge with antigenically distinct viruses.IMPORTANCE Due to the rapid evolution of the influenza A virus, vaccines require continuous strain updates. Additionally, the platform used to deliver the vaccine can have an impact on the breadth of protection. Currently, there are various vaccine platforms available to prevent influenza A virus infection in swine, and we experimentally tested two: adjuvanted-whole inactivated virus and live-attenuated virus. When challenged with an antigenically distinct virus, adjuvanted-whole inactivated virus provided partial protection, while live-attenuated virus provided effective protection. Additional strategies are required to broaden the protective properties of inactivated virus vaccines, given the dynamic antigenic landscape of cocirculating strains in North America, whereas live-attenuated vaccines may require less frequent strain updates, based on demonstrated cross-protection. Enhancing vaccine efficacy to control influenza infections in swine will help reduce the impact they have on swine production and reduce the risk of swine-to-human transmission.


Asunto(s)
Hemaglutininas Virales/genética , Hemaglutininas Virales/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/veterinaria , Vacunas Atenuadas/inmunología , Vacunas de Productos Inactivados/inmunología , Animales , Protección Cruzada/inmunología , Subtipo H3N2 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología , Sistema Respiratorio/inmunología , Sistema Respiratorio/virología , Porcinos , Replicación Viral/inmunología
18.
Infect Immun ; 86(3)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29203546

RESUMEN

Streptococcus suis is a bacterium that is commonly carried in the respiratory tract and that is also one of the most important invasive pathogens of swine, commonly causing meningitis, arthritis, and septicemia. Due to the existence of many serotypes and a wide range of immune evasion capabilities, efficacious vaccines are not readily available. The selection of S. suis protein candidates for inclusion in a vaccine was accomplished by identifying fitness genes through a functional genomics screen and selecting conserved predicted surface-associated proteins. Five candidate proteins were selected for evaluation in a vaccine trial and administered both intranasally and intramuscularly with one of two different adjuvant formulations. Clinical protection was evaluated by subsequent intranasal challenge with virulent S. suis While subunit vaccination with the S. suis proteins induced IgG antibodies to each individual protein and a cellular immune response to the pool of proteins and provided substantial protection from challenge with virulent S. suis, the immune response elicited and the degree of protection were dependent on the parenteral adjuvant given. Subunit vaccination induced IgG reactive against different S. suis serotypes, indicating a potential for cross protection.


Asunto(s)
Proteínas Bacterianas/inmunología , Infecciones Estreptocócicas/veterinaria , Vacunas Estreptocócicas/administración & dosificación , Streptococcus suis/inmunología , Enfermedades de los Porcinos/prevención & control , Animales , Anticuerpos Antibacterianos/inmunología , Proteínas Bacterianas/administración & dosificación , Proteínas Bacterianas/genética , Protección Cruzada , Femenino , Genómica , Masculino , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/prevención & control , Vacunas Estreptocócicas/genética , Vacunas Estreptocócicas/inmunología , Streptococcus suis/química , Streptococcus suis/genética , Streptococcus suis/patogenicidad , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/microbiología , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/genética , Vacunas de Subunidad/inmunología , Virulencia
19.
Virology ; 513: 168-179, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29096159

RESUMEN

Recent cases of porcine reproductive and respiratory syndrome virus (PRRSV) infection in United States swine-herds have been associated with high mortality in piglets and severe morbidity in sows. Analysis of the ORF5 gene from such clinical cases revealed a unique restriction fragment polymorphism (RFLP) of 1-7-4. The genome diversity of seventeen of these viruses (81.4% to 99.8% identical; collected 2013-2015) and the pathogenicity of 4 representative viruses were compared to that of SDSU73, a known moderately virulent strain. Recombination analyses revealed genomic breakpoints in structural and nonstructural regions of the genomes with evidence for recombination events between lineages. Pathogenicity varied between the isolates and the patterns were not consistent. IA/2014/NADC34, IA/2013/ISU-1 and IN/2014/ISU-5 caused more severe disease, and IA/2014/ISU-2 did not cause pyrexia and had little effect on pig growth. ORF5 RFLP genotyping was ineffectual in providing insight into isolate pathogenicity and that other parameters of virulence remain to be identified.


Asunto(s)
Evolución Molecular , Variación Genética , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/patogenicidad , Recombinación Genética , Proteínas del Envoltorio Viral/genética , Animales , Genotipo , Polimorfismo de Longitud del Fragmento de Restricción , Síndrome Respiratorio y de la Reproducción Porcina/epidemiología , Síndrome Respiratorio y de la Reproducción Porcina/patología , Análisis de Secuencia de ADN , Porcinos , Estados Unidos/epidemiología
20.
Appl Environ Microbiol ; 84(2)2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29101193

RESUMEN

Staphylococcus aureus is part of the nasal microbiome of many humans and has become a significant public health burden due to infections with antibiotic-resistant strains, including methicillin-resistant S. aureus (MRSA) strains. Several lineages of S. aureus, including MRSA, are found in livestock species and can be acquired by humans through contact with animals. These livestock-associated MRSA (LA-MRSA) isolates raise public health concerns because of the potential for livestock to act as reservoirs for MRSA outside the hospital setting. In the United States, swine harbor a mixed population of LA-MRSA isolates, with the sequence type 398 (ST398), ST9, and ST5 lineages being detected. LA-MRSA ST5 isolates are particularly concerning to the public health community because, unlike the isolates in the ST398 and ST9 lineages, isolates in the ST5 lineage are a significant cause of human disease in both the hospital and community settings globally. The ability of swine-associated LA-MRSA ST5 isolates to adhere to human keratinocytes in vitro was investigated, and the adherence genes harbored by these isolates were evaluated and compared to those in clinical MRSA ST5 isolates from humans with no swine contact. The two subsets of isolates adhered equivalently to human keratinocytes in vitro and contained an indistinguishable complement of adherence genes that possessed a high degree of sequence identity. Collectively, our data indicate that, unlike LA-MRSA ST398 isolates, LA-MRSA ST5 isolates do not exhibit a reduced genotypic or phenotypic capacity to adhere to human keratinocytes.IMPORTANCE Our data indicate that swine-associated livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) ST5 isolates are as capable of adhering to human skin and have the same genetic potential to adhere as clinical MRSA ST5 isolates from humans. This suggests that humans in contact with livestock have the potential to become colonized with LA-MRSA ST5 isolates; however, the genes that contribute to the persistence of S. aureus on human skin were absent in LA-MRSA ST5 isolates. The data presented here are important evidence in evaluating the potential risks that LA-MRSA ST5 isolates pose to humans who come into contact with livestock.


Asunto(s)
Adhesinas Bacterianas/genética , Adhesión Bacteriana/fisiología , Queratinocitos/microbiología , Staphylococcus aureus Resistente a Meticilina/fisiología , Infecciones Estafilocócicas/veterinaria , Animales , Adhesión Bacteriana/genética , Genes Bacterianos , Genotipo , Humanos , Ganado/microbiología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/transmisión , Porcinos/microbiología , Enfermedades de los Porcinos/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...