Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(18): 4983-4991, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38691841

RESUMEN

The exploration of two-dimensional (2D) materials with exceptional physical and chemical properties is essential for the advancement of solar water splitting technologies. However, the discovery of 2D materials is currently heavily reliant on fragmented studies with limited opportunities for fine-tuning the chemical composition and electronic features of compounds. Starting from the V2DB digital library as a resource of 2D materials, we set up and execute a funnel approach that incorporates multiple screening steps to uncover potential candidates for photocatalytic water splitting. The initial screening step is based upon machine learning (ML) predicted properties, and subsequent steps involve first-principles modeling of increasing complexity, going from density functional theory (DFT) to hybrid-DFT to GW calculations. Ensuring that at each stage more complex calculations are only applied to the most promising candidates, our study introduces an effective screening methodology that may serve as a model for accelerating 2D materials discovery within a large chemical space. Our screening process yields a selection of 11 promising 2D photocatalysts.

2.
ACS Energy Lett ; 9(5): 2343-2350, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38751970

RESUMEN

Two-dimensional (2D) organic-inorganic hybrid iodide perovskites have been put forward in recent years as stable alternatives to their three-dimensional (3D) counterparts. Using first-principles calculations, we demonstrate that equilibrium concentrations of point defects in the 2D perovskites PEA2PbI4, BA2PbI4, and PEA2SnI4 (PEA, phenethylammonium; BA, butylammonium) are much lower than in comparable 3D perovskites. Bonding disruptions by defects are more destructive in 2D than in 3D networks, making defect formation energetically more costly. The stability of 2D Sn iodide perovskites can be further enhanced by alloying with Pb. Should, however, point defects emerge in sizable concentrations as a result of nonequilibrium growth conditions, for instance, then those defects likely hamper the optoelectronic performance of the 2D perovskites, as they introduce deep traps. We suggest that trap levels are responsible for the broad sub-bandgap emission in 2D perovskites observed in experiments.

3.
ACS Appl Mater Interfaces ; 16(12): 14984-14994, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38483310

RESUMEN

To achieve more stable and efficient metal halide perovskite devices, optimization of charge transport materials and their interfaces with perovskites is crucial. ZnO on paper would make an ideal electron transport layer in perovskite devices. This metal oxide has a large bandgap, making it transparent to visible light; it can be easily n-type doped, has a decent electron mobility, and is thought to be chemically relatively inert. However, in combination with perovskites, ZnO has turned out to be a source of instability, rapidly degrading the performance of devices. In this work, we provide a comprehensive experimental and computational study of the interaction between the most common organic perovskite precursors and the surface of ZnO, with the aim of understanding the observed instability. Using X-ray photoelectron spectroscopy, we find a complete degradation of the precursors in contact with ZnO and the formation of volatile species as well as new surface bonds. Our computational work reveals that different pristine and defected surface terminations of ZnO facilitate the decomposition of the perovskite precursor molecules, mainly through deprotonation, making the deposition of the latter on those surfaces impossible without the use of passivation.

4.
J Phys Chem Lett ; 14(51): 11565-11572, 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38096543

RESUMEN

Chiral metal halide perovskites have emerged as promising optoelectronic materials for the emission and detection of circularly polarized visible light. Despite chirality being realized by adding chiral organic cations or ligands, the chiroptical activity originates from the metal halide framework. The mechanism is not well understood, as an overarching modeling framework is lacking. Capturing chirality requires going beyond electric dipole transitions, which is the common approximation in condensed matter calculations. We present a density functional theory (DFT) parametrized tight-binding (TB) model, which allows us to calculate optical properties including circular dichroism (CD) at low computational cost. Comparing Pb-based chiral perovskites with different organic cations and halide anions, we find that the structural helicity within the metal halide layers determines the size of the CD. Our results mark an important step in understanding the complex correlations of structural, electronic, and optical properties of chiral perovskites and provide a useful tool to predict new compounds with desired properties for novel optoelectronic applications.

5.
ACS Appl Mater Interfaces ; 15(31): 38018-38028, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37501654

RESUMEN

Perovskite photovoltaics has achieved conversion efficiencies of 26.0% by optimizing the optoelectronic properties of the absorber and its interfaces with charge transport layers (CTLs). However, commonly adopted organic CTLs can lead to parasitic absorption and device instability. Therefore, metal oxides like atomic layer-deposited (ALD) SnO2 in combination with fullerene-based electron transport layers have been introduced to enhance mechanical and thermal stability. Instead, when ALD SnO2 is directly processed on the absorber, i.e., without the fullerene layer, chemical modifications of the inorganic fraction of the perovskite occur, compromising the device performance. This study focuses on the organic fraction, particularly the formamidinium cation (FA+), in a CsFAPb(I,Br)3 perovskite. By employing in situ infrared spectroscopy, we investigate the impact of ALD processing on the perovskite, such as vacuum level, temperature, and exposure to half and full ALD cycles using tetrakis(dimethylamido)-Sn(IV) (TDMA-Sn) and H2O. We observe that exposing the absorber to vacuum conditions or water half-cycles has a negligible effect on the chemistry of the perovskite. However, prolonged exposure at 100 °C for 90 min results in a loss of 0.7% of the total formamidinium-related vibrational features compared to the pristine perovskite. Supported by density functional theory calculations, we speculate that FA+ deprotonates and that formamidine desorbs from the perovskite surface. Furthermore, the interaction between TDMA-Sn and FA+ induces more decomposition of the perovskite surface compared to vacuum, temperature, or H2O exposure. During the exposure to 10 ALD half-cycles of TDMA-Sn, 4% of the total FA+-related infrared features are lost compared to the pristine perovskite. Additionally, IR spectroscopy suggests the formation and trapping of sym-triazine, i.e., a decomposition product of FA+. These studies enable to decouple the effects occurring during direct ALD processing on the perovskite and highlight the crucial role of the Sn precursor in affecting the perovskite surface chemistry and compromising the device performance.

6.
Adv Mater ; 35(32): e2211806, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37226815

RESUMEN

Polycrystalline perovskite films fabricated on flexible and textured substrates often are highly defective, leading to poor performance of perovskite devices. Finding substrate-tolerant perovskite fabrication strategies is therefore paramount. Herein, this study shows that adding a small amount of Cadmium Acetate (CdAc2 ) in the PbI2 precursor solution results in nano-hole array films and improves the diffusion of organic salts in PbI2 and promotes favorable crystal orientation and suppresses non-radiative recombination. Polycrystalline perovskite films on the flexible substrate with ultra-long carrier lifetimes exceeding 6 µs are achieved. Eventually, a power conversion efficiency (PCE) of 22.78% is obtained for single-junction flexible perovskite solar cells (FPSCs). Furthermore, it is found that the strategy is also applicable for textured tandem solar cells. A champion PCE of 29.25% (0.5003 cm2 ) is demonstrated for perovskite/silicon tandem solar cells (TSCs) with CdAc2 . Moreover, the un-encapsulated TSCs maintains 109.78% of its initial efficiency after 300 h operational at 45 °C in a  nitrogen atmosphere. This study provides a facile strategy for achieving high-efficiency perovskite-based solar cells.

7.
ACS Energy Lett ; 8(2): 943-949, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36816777

RESUMEN

The two-dimensional (2D) mixed halide perovskite PEA2Pb(I1-x Br x )4 exhibits high phase stability under illumination as compared to the three-dimensional (3D) counterpart MAPb(I1-x Br x )3. We explain this difference using a thermodynamic theory that considers the sum of a compositional and a photocarrier free energy. Ab initio calculations show that the improved compositional phase stability of the 2D perovskite is caused by a preferred I-Br distribution, leading to a much lower critical temperature for halide segregation in the dark than for the 3D perovskite. Moreover, a smaller increase of the band gap with Br concentration x and a markedly shorter photocarrier lifetime in the 2D perovskite reduce the driving force for phase segregation under illumination, enhancing the photostability.

8.
Small ; 19(12): e2206787, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36592419

RESUMEN

Organic A'-site ligand structure plays a crucial role in the crystal growth of 2D perovskites, but the underlying mechanism has not been adequately understood. This problem is tackled by studying the influence of two isomeric A'-site ligands, linear-shaped n-butylammonium (n-BA+ ) and branched iso-butylammonium (iso-BA+ ), on 2D perovskites from precursor to device, with a combination of in situ grazing-incidence wide-angle X-ray scattering and density functional theory. It is found that branched iso-BA+ , due to the lower aggregation enthalpies, tends to form large-size clusters in the precursor solution, which can act as pre-nucleation sites to expedite the crystallization of vertically oriented 2D perovskites. Furthermore, iso-BA+ is less likely to be incorporated into the MAPbI3 lattice than n-BA+ , suppressing the formation of unwanted multi-oriented perovskites. These findings well explain the better device performance of 2D perovskite solar cells based on iso-BA+ and elucidate the fundamental mechanism of ligand structural impact on 2D perovskite crystallization.

9.
J Phys Chem C Nanomater Interfaces ; 127(2): 1189-1197, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36704664

RESUMEN

Lattice defects affect the long-term stability of halide perovskite solar cells. Whereas simple point defects, i.e., atomic interstitials and vacancies, have been studied in great detail, here we focus on compound defects that are more likely to form under crystal growth conditions, such as compound vacancies or interstitials, and antisites. We identify the most prominent defects in the archetype inorganic perovskite CsPbI3, through first-principles density functional theory (DFT) calculations. We find that under equilibrium conditions at room temperature, the antisite of Pb substituting Cs forms in a concentration comparable to those of the most prominent point defects, whereas the other compound defects are negligible. However, under nonequilibrium thermal and operating conditions, other complexes also become as important as the point defects. Those are the Cs substituting Pb antisite, and, to a lesser extent, the compound vacancies of PbI2 or CsPbI3 units, and the I substituting Cs antisite. These compound defects only lead to shallow or inactive charge carrier traps, which testifies to the electronic stability of the halide perovskites. Under operating conditions with a quasi-Fermi level very close to the valence band, deeper traps can develop.

10.
Chemphyschem ; 24(5): e202200429, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36377406

RESUMEN

Magnetic exchange force microscopy (MExFM) is an important experimental technique for mapping the magnetic structure of surfaces with atomic resolution relying on the spin-dependent short-range exchange interaction between a magnetic tip and a magnetic surface. RuO2 is a significant compound with applications in heterogeneous catalysis and electrocatalysis. It has been characterized recently as an antiferromagnetic (AFM) material, and its magnetism has been predicted somewhat surprisingly to play an important role in its catalytic properties. In the current study, we explore theoretically whether MExFM can visualize the magnetic surface structure of RuO2 . We use density functional theory (DFT) calculations to extract the exchange interactions between a ferromagnetic Fe tip interacting with an AFM RuO2 (110) surface, as a function of tip-surface distance and the position of the tip over the surface. Mimicking the MExFM experiment, these data are then used to calculate the normalized frequency shift of an oscillating cantilever tip versus the minimum tip-surface distance, and construct corrugation height line profiles. It is found that the exchange interaction between tip and surface is strongest for a parallel configuration of the spins of the tip and of the surface; it is weakest for an anti-parallel orientation. In a corrugation profile, this gives rise to a sizable height difference of 25 pm between the spin-up and spin-down Ru atoms in the RuO2 (110) surface at a normalized frequency shift γ ${\gamma }$ =-10.12 fNm1/2 . The O atoms in the surface are not or hardly visible in the corrugation profile.

11.
Adv Mater ; 34(30): e2202042, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35642723

RESUMEN

3D mixed-halide perovskite-based red emitters combine excellent charge-transport characteristics with simple solution processing and good film formation; however, light-emitting diodes (LEDs) based on these emitters cannot yet outperform their nanocrystal counterparts. Here the use of diammonium halides in regulating the formation of mixed bromide-iodide perovskite films is explored. It is found that the diammonium cations preferentially bond to Pb-Br, rather than Pb-I, octahedra, promoting the formation of quasi-2D phases. It is proposed that the perovskite formation is initially dominated by the crystallization of the thermodynamically more favorable 3D phase, but, as the solution gets depleted from the regular A cations, thin shells of amorphous quasi-2D perovskites form. This leads to crystalline perovskite grains with efficiently passivated surfaces and reduced lattice strain. As a result, the diammonium-treated perovskite LEDs demonstrate a record luminance (10745 cd m-2 ) and half-lifetime among 3D perovskite-based red LEDs.

12.
J Phys Chem C Nanomater Interfaces ; 126(13): 5950-5959, 2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35422891

RESUMEN

Ruthenium (Ru) thin films are used as protective caps for the multilayer mirrors in extreme ultraviolet lithography machines. When these mirrors are exposed to atomic hydrogen (H), it can permeate through Ru, leading to the formation of hydrogen-filled blisters on the mirrors. H has been shown to exhibit low solubility in bulk Ru, but the nature of H diffusion through Ru and its contribution to the mechanisms of blistering remain unknown. This work makes use of reactive molecular dynamics simulations to study the influence of imperfections in a Ru film on the behavior of H. For the Ru/H system, a ReaxFF force field which reproduces structures and energies obtained from quantum-mechanical calculations was parametrized. Molecular dynamics simulations have been performed with the newly developed force field to study the effect of tilt and twist grain boundaries on the overall diffusion behavior of H in Ru. Our simulations show that the tilt and twist grain boundaries provide energetically favorable sites for hydrogen atoms and act as sinks and highways for H. They therefore block H transport across their planes and favor diffusion along their planes. This results in the accumulation of hydrogen at the grain boundaries. The strong effect of the grain boundaries on hydrogen diffusion suggests tailoring the morphology of ruthenium thin films as a means to curb the rate of hydrogen permeation.

13.
ACS Appl Mater Interfaces ; 14(30): 34208-34219, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35107986

RESUMEN

Despite the rapid progress in perovskite solar cells, their commercialization is still hindered by issues regarding long-term stability, which can be strongly affected by metal oxide-based charge extraction layers next to the perovskite material. With MoO3 being one of the most successful hole transport layers in organic photovoltaics, the disastrous results of its combination with perovskite films came as a surprise but was soon attributed to severe chemical instability at the MoO3/perovskite interface. To discover the atomistic origin of this instability, we combine density functional theory (DFT) calculations and X-ray photoelectron spectroscopy (XPS) measurements to investigate the interaction of MoO3 with the perovskite precursors MAI, MABr, FAI, and FABr. From DFT calculations we suggest a scenario that is based upon oxygen vacancies playing a key role in interface degradation reactions. Not only do these vacancies promote decomposition reactions of perovskite precursors, but they also constitute the reaction centers for redox reactions leading to oxidation of the halides and reduction of Mo. Specifically iodides are proposed to be reactive, while bromides do not significantly affect the oxide. XPS measurements reveal a severe reduction of Mo and a loss of the halide species when the oxide is interfaced with I-containing precursors, which is consistent with the proposed scenario. In line with the latter, experimentally observed effects are much less pronounced in case of Br-containing precursors. We further find that the reactivity of the MoO3 substrate can be moderated by reducing the number of oxygen vacancies through a UV/ozone treatment, though it cannot be fully eliminated.

14.
Phys Chem Chem Phys ; 23(25): 13878-13884, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34114582

RESUMEN

An atomistic description of tin deposition on ruthenium and its effect on blistering damage is of great interest in extreme ultraviolet (EUV) lithography. In EUV machines, tin debris from the EUV-emitting tin plasma may be deposited on the mirrors in the optical path. Tin facilitates the formation of hydrogen-filled blisters under the ruthenium top layer of the multi-layer mirrors. We have used Density Functional Theory (DFT) to show that tin deposition on a clean ruthenium surface exhibits a film-plus-islands (Stranski-Krastanov) growth mode, with the first atomic layer bonding strongly to the substrate. We find that a single tin layer allows hydrogen to reach the ruthenium surface and subsurface more easily than on clean ruthenium, but hydrogen penetration through the tin film becomes progressively more difficult when more layers are added. The results indicate that hydrogen penetration and blistering occur when only a thin layer of tin is present.

15.
ChemSusChem ; 14(15): 3064-3073, 2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34037325

RESUMEN

In the quest for active and inexpensive (photo)electrocatalysts, atomistic simulations of the oxygen evolution reaction (OER) are essential for understanding the catalytic process of water splitting at solid surfaces. In this paper, the enhancement of the OER by first-row transition-metal (TM) doping of the abundant semiconductor ZnO was studied using density functional theory (DFT) calculations on a substantial number of possible structures and bonding geometries. The calculated overpotential for undoped ZnO was 1.0 V. For TM dopants in the 3d series from Mn to Ni, the overpotentials decreased from 0.9 V for Mn and 0.6 V for Fe down to 0.4 V for Co, and rose again to 0.5 V for Ni and 0.8 V for Cu. The overpotentials were analyzed in terms of the binding to the surface of the species involved in the four reaction steps of the OER. The Gibbs free energies associated with the adsorption of these intermediate species increased in the series from Mn to Zn, but the difference between OH and OOH adsorption (the species involved in the first, respectively the third reaction step) was always in the range 3.0-3.3 eV, despite a considerable variation in possible bonding geometries. The bonding of the O intermediate species (involved in the second reaction step), which is optimal for Co, and to a somewhat lesser extend for Ni, then ultimately determined the overpotential. These results implied that both Co and Ni are promising dopants for increasing the activity of ZnO-based anodes for the OER.

16.
Nat Commun ; 12(1): 2687, 2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976203

RESUMEN

Mixed halide perovskites that are thermodynamically stable in the dark demix under illumination. This is problematic for their application in solar cells. We present a unified thermodynamic theory for this light-induced halide segregation that is based on a free energy lowering of photocarriers funnelling to a nucleated phase with different halide composition and lower band gap than the parent phase. We apply the theory to a sequence of mixed iodine-bromine perovskites. The spinodals separating metastable and unstable regions in the composition-temperature phase diagrams only slightly change under illumination, while light-induced binodals separating stable and metastable regions appear signalling the nucleation of a low-band gap iodine-rich phase. We find that the threshold photocarrier density for halide segregation is governed by the band gap difference of the parent and iodine-rich phase. Partial replacement of organic cations by cesium reduces this difference and therefore has a stabilizing effect.

17.
Nat Commun ; 12(1): 644, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33510190

RESUMEN

Perovskite light emitting diodes suffer from poor operational stability, exhibiting a rapid decay of external quantum efficiency within minutes to hours after turn-on. To address this issue, we explore surface treatment of perovskite films with phenylalkylammonium iodide molecules of varying alkyl chain lengths. Combining experimental characterization and theoretical modelling, we show that these molecules stabilize the perovskite through suppression of iodide ion migration. The stabilization effect is enhanced with increasing chain length due to the stronger binding of the molecules with the perovskite surface, as well as the increased steric hindrance to reconfiguration for accommodating ion migration. The passivation also reduces the surface defects, resulting in a high radiance and delayed roll-off of external quantum efficiency. Using the optimized passivation molecule, phenylpropylammonium iodide, we achieve devices with an efficiency of 17.5%, a radiance of 1282.8 W sr-1 m-2 and a record T50 half-lifetime of 130 h under 100 mA cm-2.

18.
Adv Mater ; 32(42): e2004630, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32939914

RESUMEN

Two-step-fabricated FAPbI3 -based perovskites have attracted increasing attention because of their excellent film quality and reproducibility. However, the underlying film formation mechanism remains mysterious. Here, the crystallization kinetics of a benchmark FAPbI3 -based perovskite film with sequential A-site doping of Cs+ and GA+ is revealed by in situ X-ray scattering and first-principles calculations. Incorporating Cs+ in the first step induces an alternative pathway from δ-CsPbI3 to perovskite α-phase, which is energetically more favorable than the conventional pathways from PbI2 . However, pinholes are formed due to the nonuniform nucleation with sparse δ-CsPbI3 crystals. Fortunately, incorporating GA+ in the second step can not only promote the phase transition from δ-CsPbI3 to the perovskite α-phase, but also eliminate pinholes via Ostwald ripening and enhanced grain boundary migration, thus boosting efficiencies of perovskite solar cells over 23%. This work demonstrates the unprecedented advantage of the two-step process over the one-step process, allowing a precise control of the perovskite crystallization kinetics by decoupling the crystal nucleation and growth process.

19.
Adv Mater ; 32(34): e2002392, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32686130

RESUMEN

Low-dimensional perovskites have gained increasing attention recently, and engineering their material phases, structural patterning and interfacial properties is crucial for future perovskite-based applications. Here a phase and heterostructure engineering on ultrathin perovskites, through the reversible cation exchange of hybrid perovskites and efficient surface functionalization of low-dimensional materials, is demonstrated. Using PbI2 as precursor and template, perovskite nanosheets of varying thickness and hexagonal shape on diverse substrates is obtained. Multiple phases, such as PbI2 , MAPbI3 and FAPbI3 , can be flexibly designed and transformed as a single nanosheet. A perovskite nanosheet can be patterned using masks made of 2D materials, fabricating lateral heterostructures of perovskite and PbI2 . Perovskite-based vertical heterostructures show strong interfacial coupling with 2D materials. As a demonstration, monolayer MoS2 /MAPbI3 stacks give a type-II heterojunction. The ability to combine the optically efficient perovskites with versatile 2D materials creates possibilities for new designs and functionalities.

20.
Phys Chem Chem Phys ; 22(15): 7935-7941, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32232240

RESUMEN

Hydrogen permeation into mirrors used in extreme ultraviolet lithography results in the formation of blisters, which are detrimental to reflectivity. An understanding of the mechanism via which hydrogen ends up at the interface between the top ruthenium layer and the underlying bilayers is necessary to mitigate the blistering damage. In this study, we use density functional theory to examine the ways in which hydrogen, having entered the near-surface interstitial voids, can migrate further into the metal or to its surface. We show that with hydrogen and tin adsorbed on the ruthenium surface, diffusion to the surface is blocked for interstitial hydrogen in the metal, making diffusion further into the metal more likely than out-diffusion. The dependence on surface conditions matches and confirms similar findings on hydrogen permeation into metals. This suggests control and modification of surface conditions as a way to influence hydrogen retention and blistering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...