Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell Environ ; 45(4): 1216-1228, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35119114

RESUMEN

The mechanisms by which woody plants recover xylem hydraulic capacity after drought stress are not well understood, particularly with regard to the role of embolism refilling. We evaluated the recovery of xylem hydraulic capacity in young Eucalyptus saligna plants exposed to cycles of drought stress and rewatering. Plants were exposed to moderate and severe drought stress treatments, with recovery monitored at time intervals from 24 h to 6 months after rewatering. The percentage loss of xylem vessels due to embolism (PLV) was quantified at each time point using microcomputed tomography with stem water potential (Ψx ) and canopy transpiration (Ec ) measured before scans. Plants exposed to severe drought stress suffered high levels of embolism (47.38% ± 10.97% PLV) and almost complete canopy loss. No evidence of embolism refilling was observed at 24 h, 1 week, or 3 weeks after rewatering despite rapid recovery in Ψx . Recovery of hydraulic capacity was achieved over a 6-month period by growth of new xylem tissue, with canopy leaf area and Ec recovering over the same period. These findings indicate that E. saligna recovers slowly from severe drought stress, with potential for embolism to persist in the xylem for many months after rainfall events.


Asunto(s)
Sequías , Eucalyptus , Hojas de la Planta , Agua , Microtomografía por Rayos X , Xilema
2.
New Phytol ; 232(1): 148-161, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34171131

RESUMEN

Leaf habit has been hypothesized to define a linkage between the slow-fast plant economic spectrum and the drought resistance-avoidance trade-off in tropical forests ('slow-safe vs fast-risky'). However, variation in hydraulic traits as a function of leaf habit has rarely been explored for a large number of species. We sampled leaf and branch functional traits of 97 tropical dry forest tree species from four sites to investigate whether patterns of trait variation varied consistently in relation to leaf habit along the 'slow-safe vs fast-risky' trade-off. Leaf habit explained from 0% to 43.69% of individual trait variation. We found that evergreen and semi-deciduous species differed in their location along the multivariate trait ordination when compared to deciduous species. While deciduous species showed consistent trait values, evergreen species trait values varied as a function of the site. Last, trait values varied in relation to the proportion of deciduous species in the plant community. We found that leaf habit describes the strategies that define drought avoidance and plant economics in tropical trees. However, leaf habit alone does not explain patterns of trait variation, which suggests quantifying site-specific or species-specific uncertainty in trait variation as the way forward.


Asunto(s)
Árboles , Clima Tropical , Bosques , Hábitos , Hojas de la Planta
3.
New Phytol ; 231(4): 1415-1430, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33959976

RESUMEN

Desiccation tolerant plants can survive extreme water loss in their vegetative tissues. The fern Anemia caffrorum produces desiccation tolerant (DT) fronds in the dry season and desiccation sensitive (DS) fronds in the wet season, providing a unique opportunity to explore the physiological mechanisms associated with desiccation tolerance. Anemia caffrorum plants with either DT or DS fronds were acclimated in growth chambers. Photosynthesis, frond structure and anatomy, water relations and minimum conductance to water vapour were measured under well-watered conditions. Photosynthesis, hydraulics, frond pigments, antioxidants and abscisic acid contents were monitored under water deficit. A comparison between DT and DS fronds under well-watered conditions showed that the former presented higher leaf mass per area, minimum conductance, tissue elasticity and lower CO2 assimilation. Water deficit resulted in a similar induction of abscisic acid in both frond types, but DT fronds maintained higher stomatal conductance and upregulated more prominently lipophilic antioxidants. The seasonal alternation in production of DT and DS fronds in A. caffrorum represents a mechanism by which carbon gain can be maximized during the rainy season, and a greater investment in protective mechanisms occurs during the hot dry season, enabling the exploitation of episodic water availability.


Asunto(s)
Anemia , Helechos , Deshidratación , Desecación , Fotosíntesis , Hojas de la Planta , Agua
4.
J Exp Bot ; 72(11): 3971-3986, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33780533

RESUMEN

The key role of cell walls in setting mesophyll conductance to CO2 (gm) and, consequently, photosynthesis is reviewed. First, the theoretical properties of cell walls that can affect gm are presented. Then, we focus on cell wall thickness (Tcw) reviewing empirical evidence showing that Tcw varies strongly among species and phylogenetic groups in a way that correlates with gm and photosynthesis; that is, the thicker the mesophyll cell walls, the lower the gm and photosynthesis. Potential interplays of gm, Tcw, dehydration tolerance, and hydraulic properties of leaves are also discussed. Dynamic variations of Tcw in response to the environment and their implications in the regulation of photosynthesis are discussed, and recent evidence suggesting an influence of cell wall composition on gm is presented. We then propose a hypothetical mechanism for the influence of cell walls on photosynthesis, combining the effects of thickness and composition, particularly pectins. Finally, we discuss the prospects for using biotechnology for enhancing photosynthesis by altering cell wall-related genes.


Asunto(s)
Dióxido de Carbono , Fotosíntesis , Dióxido de Carbono/metabolismo , Pared Celular/metabolismo , Células del Mesófilo , Filogenia , Hojas de la Planta
5.
Tree Physiol ; 41(9): 1627-1640, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-33611521

RESUMEN

Plants from arid environments display covarying traits to survive or resist drought. Plant drought resistance and ability to survive long periods of low soil water availability should involve leaf phenology coordination with leaf and stem functional traits related to water status. This study tested correlations between phenology and functional traits involved in plant water status regulation in 10 Sonoran Desert tree species with contrasting phenology. Species seasonal variation in plant water status was defined by calculating their relative positions along the iso/anisohydric regulation continuum based on their hydroscape areas (HA)-a metric derived from the relationship between predawn and midday water potentials-and stomatal and hydraulic traits. Additionally, functional traits associated with plant water status regulation, including lamina vessel hydraulic diameter (DHL), stem-specific density (SSD) and leaf mass per area (LMA) were quantified per species. To characterize leaf phenology, leaf longevity (LL) and canopy foliage duration (FD) were determined. Hydroscape area was strongly correlated with FD but not with leaf longevity (LL); HA was significantly associated with SSD and leaf hydraulic traits (DHL, LMA) but not with stem hydraulic traits (vulnerability index, relative conductivity); and FD was strongly correlated with LMA and SSD. Leaf physiological characteristics affected leaf phenology when it was described as canopy FD better than when described as LL. Stem and leaf structure and hydraulic functions were not only relevant for categorizing species along the iso/anisohydric continuum but also allowed identifying different strategies of desert trees within the 'fast-slow' plant economics spectrum. The results in this study pinpoint the set of evolutionary pressures that shape the Sonoran Desert Scrub physiognomy.


Asunto(s)
Árboles , Agua , Sequías , Longevidad , Hojas de la Planta
6.
New Phytol ; 228(3): 884-897, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32542732

RESUMEN

Hydraulic failure of the plant vascular system is a principal cause of forest die-off under drought. Accurate quantification of this process is essential to our understanding of the physiological mechanisms underpinning plant mortality. Imaging techniques increasingly are applied to estimate xylem cavitation resistance. These techniques allow for in situ measurement of embolism formation in real time, although the benefits and trade-offs associated with different techniques have not been evaluated in detail. Here we compare two imaging methods, microcomputed tomography (microCT) and optical vulnerability (OV), to standard hydraulic methods for measurement of cavitation resistance in seven woody species representing a diversity of major phylogenetic and xylem anatomical groups. Across the seven species, there was strong agreement between cavitation resistance values (P50 ) estimated from visualization techniques (microCT and OV) and between visual techniques and hydraulic techniques. The results indicate that visual techniques provide accurate estimates of cavitation resistance and the degree to which xylem hydraulic function is impacted by embolism. Results are discussed in the context of trade-offs associated with each technique and possible causes of discrepancy between estimates of cavitation resistance provided by visual and hydraulic techniques.


Asunto(s)
Agua , Xilema , Sequías , Filogenia , Madera , Microtomografía por Rayos X
7.
BMC Plant Biol ; 17(1): 107, 2017 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-28629324

RESUMEN

BACKGROUND: While most water loss from leaf surfaces occurs via stomata, part of this loss also occurs through the leaf cuticle, even when the stomata are fully closed. This component, termed residual transpiration, dominates during the night and also becomes critical under stress conditions such as drought or salinity. Reducing residual transpiration might therefore be a potentially useful mechanism for improving plant performance when water availability is reduced (e.g. under saline or drought stress conditions). One way of reducing residual transpiration may be via increased accumulation of waxes on the surface of leaf. Residual transpiration and wax constituents may vary with leaf age and position as well as between genotypes. This study used barley genotypes contrasting in salinity stress tolerance to evaluate the contribution of residual transpiration to the overall salt tolerance, and also investigated what role cuticular waxes play in this process. Leaves of three different positions (old, intermediate and young) were used. RESULTS: Our results show that residual transpiration was higher in old leaves than the young flag leaves, correlated negatively with the osmolality, and was positively associated with the osmotic and leaf water potentials. Salt tolerant varieties transpired more water than the sensitive variety under normal growth conditions. Cuticular waxes on barley leaves were dominated by primary alcohols (84.7-86.9%) and also included aldehydes (8.90-10.1%), n-alkanes (1.31-1.77%), benzoate esters (0.44-0.52%), phytol related compounds (0.22-0.53%), fatty acid methyl esters (0.14-0.33%), ß-diketones (0.07-0.23%) and alkylresorcinols (1.65-3.58%). A significant negative correlation was found between residual transpiration and total wax content, and residual transpiration correlated significantly with the amount of primary alcohols. CONCLUSIONS: Both leaf osmolality and the amount of total cuticular wax are involved in controlling cuticular water loss from barley leaves under well irrigated conditions. A significant and negative relationship between the amount of primary alcohols and a residual transpiration implies that some cuticular wax constituents act as a water barrier on plant leaf surface and thus contribute to salinity stress tolerance. It is suggested that residual transpiration could be a fundamental mechanism by which plants optimize water use efficiency under stress conditions.


Asunto(s)
Hordeum/fisiología , Transpiración de Plantas , Plantas Tolerantes a la Sal/fisiología , Hordeum/ultraestructura , Concentración Osmolar , Epidermis de la Planta/fisiología , Hojas de la Planta/fisiología , Hojas de la Planta/ultraestructura , Estrés Fisiológico , Agua , Ceras
9.
Front Plant Sci ; 8: 501, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28439283

RESUMEN

Floral longevity (FL) determines the balance between pollination success and flower maintenance. While a longer floral duration enhances the ability of plants to attract pollinators, it can be detrimental if it negatively affects overall plant fitness. Longer-lived leaves display a positive correlation with their dry mass per unit area, which influences leaf construction costs and physiological functions. However, little is known about the association among FL and floral dry mass per unit area (FMA) and water maintenance traits. We investigated whether increased FL might incur similar costs. Our assessment of 11 species of Paphiopedilum (slipper orchids) considered the impact of FMA and flower water-maintenance characteristics on FL. We found a positive relationship between FL and FMA. Floral longevity showed significant correlations with osmotic potential at the turgor loss and bulk modulus of elasticity but not with FA. Neither the size nor the mass per area was correlated between leaves and flowers, indicating that flower and leaf economic traits evolved independently. Therefore, our findings demonstrate a clear relationship between FL and the capacity to maintain water status in the flower. These economic constraints also indicate that extending the flower life span can have a high physiological cost in Paphiopedilum.

10.
Funct Plant Biol ; 44(2): 253-266, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32480561

RESUMEN

Plant breeders are in the need for a convenient, reproducible, reliable and rapid screening methods to be used as a proxy for drought tolerance for a large number of genotypes. Addressing this need, we compared different physiological measures of stress in six barley (Hordeum vulgare L.) genotypes subjected to different drought treatments under glasshouse conditions. Genotypes were evaluated by measuring transpiration rate, quantum yield of PSII (chlorophyll fluorescence Fv/Fm ratio), SPAD chlorophyll meter reading, dry biomass and shoot water content. The accuracy of different methods for quantifying water stress tolerance was evaluated by measuring the rates of surviving and death in plants and leaves, and newly grown leaves after rewatering. In another experiment, the same genotypes were evaluated by applying 18% (w/v) of polyethylene glycol (PEG) to germinating seeds grown in paper rolls to induce osmotic stress, using relative root and shoot lengths as a measure of tolerance. The results suggest that transpiration measurements at the recovery stage could be the most sensitive method for separating contrasting genotypes. However, the method is time-consuming and laborious for large-scale screening. Chlorophyll content, dry biomass, shoot water content and stomatal density did not correlate with plant drought tolerance. At the same time, chlorophyll fluorescence Fv/Fm ratio showed a strong correlation with drought tolerance and could be recommended as suitable proxy for screening. Measuring relative root growth rate (length) using PEG-treated paper roll-grown seedlings also seems to be a highly suitable and promising method for screening a large number of genotypes in breeding programs.

12.
New Phytol ; 209(1): 123-36, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26378984

RESUMEN

The evolution of lignified xylem allowed for the efficient transport of water under tension, but also exposed the vascular network to the risk of gas emboli and the spread of gas between xylem conduits, thus impeding sap transport to the leaves. A well-known hypothesis proposes that the safety of xylem (its ability to resist embolism formation and spread) should trade off against xylem efficiency (its capacity to transport water). We tested this safety-efficiency hypothesis in branch xylem across 335 angiosperm and 89 gymnosperm species. Safety was considered at three levels: the xylem water potentials where 12%, 50% and 88% of maximal conductivity are lost. Although correlations between safety and efficiency were weak (r(2)  < 0.086), no species had high efficiency and high safety, supporting the idea for a safety-efficiency tradeoff. However, many species had low efficiency and low safety. Species with low efficiency and low safety were weakly associated (r(2)  < 0.02 in most cases) with higher wood density, lower leaf- to sapwood-area and shorter stature. There appears to be no persuasive explanation for the considerable number of species with both low efficiency and low safety. These species represent a real challenge for understanding the evolution of xylem.


Asunto(s)
Cycadopsida/fisiología , Magnoliopsida/fisiología , Xilema/fisiología , Hojas de la Planta/fisiología , Transpiración de Plantas , Agua/fisiología , Madera
13.
Plant Cell Environ ; 39(3): 694-705, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26510650

RESUMEN

Stomatal responsiveness to vapour pressure deficit (VPD) results in continuous regulation of daytime gas-exchange directly influencing leaf water status and carbon gain. Current models can reasonably predict steady-state stomatal conductance (gs ) to changes in VPD but the gs dynamics between steady-states are poorly known. Here, we used a diverse sample of conifers and ferns to show that leaf hydraulic architecture, in particular leaf capacitance, has a major role in determining the gs response time to perturbations in VPD. By using simultaneous measurements of liquid and vapour fluxes into and out of leaves, the in situ fluctuations in leaf water balance were calculated and appeared to be closely tracked by changes in gs thus supporting a passive model of stomatal control. Indeed, good agreement was found between observed and predicted gs when using a hydropassive model based on hydraulic traits. We contend that a simple passive hydraulic control of stomata in response to changes in leaf water status provides for efficient stomatal responses to VPD in ferns and conifers, leading to closure rates as fast or faster than those seen in most angiosperms.


Asunto(s)
Helechos/fisiología , Estomas de Plantas/fisiología , Vapor , Helechos/anatomía & histología , Modelos Biológicos , Factores de Tiempo
14.
Tree Physiol ; 36(2): 218-28, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26612850

RESUMEN

The Araucariaceae is an iconic tree family. Once globally important, the Araucariaceae declined dramatically over the Cenozoic period. Increasing aridity is thought to be responsible for extinction and range contraction of Araucariaceae in Australia, yet little is known about how these trees respond to water stress. We examined the response to water stress of the recently discovered tree Wollemia nobilis Jones, W.G., Hill, K.D. & Allen, J.M. (Araucariaceae) and two closely related and widespread tree species, Araucaria bidwillii Hook. and Araucaria cunninghamii Mudie, and the island-endemic species, Araucaria heterophylla (Salisb.) Franco. Leaf water potential in all Araucaria spp. remained remarkably unchanged during both dehydration and rehydration, indicating strong isohydry. The xylem tensions at which shoot and stem hydraulic conductances were reduced to 50% (P50shoot and P50stem) were closely correlated in all species. Among the four species, W. nobilis exhibited greater resistance to xylem hydraulic dysfunction during water stress (as indicated by P50shoot and P50stem). Unexpectedly, W. nobilis also experienced the highest levels of crown mortality in response to dehydration, suggesting that this was the most drought-sensitive species in this study. Our results highlight that single traits (e.g., P50) should not be used in isolation to predict drought survival. Further, we found no clear correlation between species' P50 and rainfall across their distributional range. Diversity in drought response among these closely related Araucariaceae species was surprisingly high, considering their reputation as a functionally conservative family.


Asunto(s)
Sequías , Tracheophyta/fisiología , Árboles/fisiología , Agua/fisiología , Australia
16.
New Phytol ; 199(2): 559-570, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23647069

RESUMEN

The processes by which the functions of interdependent tissues are coordinated as lineages diversify are poorly understood. Here, we examine evolutionary coordination of vascular, epidermal and cortical leaf tissues in the anatomically, ecologically and morphologically diverse woody plant family Proteaceae. We found that, across the phylogenetic range of Proteaceae, the sizes of guard, epidermal, palisade and xylem cells were positively correlated with each other but negatively associated with vein and stomatal densities. The link between venation and stomata resulted in a highly efficient match between potential maximum water loss (determined by stomatal conductance) and the leaf vascular system's capacity to replace that water. This important linkage is likely to be driven by stomatal size, because spatial limits in the packing of stomata onto the leaf surface apparently constrain the maximum size and density of stomata. We conclude that unified evolutionary changes in cell sizes of independent tissues, possibly mediated by changes in genome size, provide a means of substantially modifying leaf function while maintaining important functional links between leaf tissues. Our data also imply the presence of alternative evolutionary strategies involving cellular miniaturization during radiation into closed forest, and cell size increase in open habitats.


Asunto(s)
Tamaño de la Célula , Hojas de la Planta/citología , Evolución Biológica , Ecosistema , Modelos Biológicos , Filogenia , Hojas de la Planta/anatomía & histología , Estomas de Plantas/citología , Haz Vascular de Plantas/anatomía & histología , Haz Vascular de Plantas/citología , Proteaceae/citología , Carácter Cuantitativo Heredable , Especificidad de la Especie
17.
PLoS One ; 8(12): e85420, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24392008

RESUMEN

Models that predict the form of hierarchical branching networks typically invoke optimization based on biomechanical similitude, the minimization of impedance to fluid flow, or construction costs. Unfortunately, due to the small size and high number of vein segments found in real biological networks, complete descriptions of networks needed to evaluate such models are rare. To help address this we report results from the analysis of the branching geometry of 349 leaf vein networks comprising over 1.5 million individual vein segments. In addition to measuring the diameters of individual veins before and after vein bifurcations, we also assign vein orders using the Horton-Strahler ordering algorithm adopted from the study of river networks. Our results demonstrate that across all leaves, both radius tapering and the ratio of daughter to parent branch areas for leaf veins are in strong agreement with the expectation from Murray's law. However, as veins become larger, area ratios shift systematically toward values expected under area-preserving branching. Our work supports the idea that leaf vein networks differentiate roles of leaf support and hydraulic supply between hierarchical orders.


Asunto(s)
Modelos Biológicos , Hojas de la Planta/anatomía & histología
18.
Nature ; 491(7426): 752-5, 2012 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-23172141

RESUMEN

Shifts in rainfall patterns and increasing temperatures associated with climate change are likely to cause widespread forest decline in regions where droughts are predicted to increase in duration and severity. One primary cause of productivity loss and plant mortality during drought is hydraulic failure. Drought stress creates trapped gas emboli in the water transport system, which reduces the ability of plants to supply water to leaves for photosynthetic gas exchange and can ultimately result in desiccation and mortality. At present we lack a clear picture of how thresholds to hydraulic failure vary across a broad range of species and environments, despite many individual experiments. Here we draw together published and unpublished data on the vulnerability of the transport system to drought-induced embolism for a large number of woody species, with a view to examining the likely consequences of climate change for forest biomes. We show that 70% of 226 forest species from 81 sites worldwide operate with narrow (<1 megapascal) hydraulic safety margins against injurious levels of drought stress and therefore potentially face long-term reductions in productivity and survival if temperature and aridity increase as predicted for many regions across the globe. Safety margins are largely independent of mean annual precipitation, showing that there is global convergence in the vulnerability of forests to drought, with all forest biomes equally vulnerable to hydraulic failure regardless of their current rainfall environment. These findings provide insight into why drought-induced forest decline is occurring not only in arid regions but also in wet forests not normally considered at drought risk.


Asunto(s)
Cambio Climático , Sequías , Geografía , Estrés Fisiológico/fisiología , Árboles/fisiología , Biodiversidad , Ciclo del Carbono , Cycadopsida/fisiología , Internacionalidad , Magnoliopsida/fisiología , Presión , Lluvia , Temperatura , Árboles/clasificación , Árboles/crecimiento & desarrollo , Xilema/metabolismo , Xilema/fisiología
19.
Ann Bot ; 110(1): 189-99, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22585930

RESUMEN

BACKGROUND AND AIMS: The co-occurring of evergreen and deciduous angiosperm trees in Asian tropical dry forests on karst substrates suggests the existence of different water-use strategies among species. In this study it is hypothesized that the co-occurring evergreen and deciduous trees differ in stem hydraulic traits and leaf water relationships, and there will be correlated evolution in drought tolerance between leaves and stems. METHODS: A comparison was made of stem hydraulic conductivity, vulnerability curves, wood anatomy, leaf life span, leaf pressure-volume characteristics and photosynthetic capacity of six evergreen and six deciduous tree species co-occurring in a tropical dry karst forest in south-west China. The correlated evolution of leaf and stem traits was examined using both traditional and phylogenetic independent contrasts correlations. KEY RESULTS: It was found that the deciduous trees had higher stem hydraulic efficiency, greater hydraulically weighted vessel diameter (D(h)) and higher mass-based photosynthetic rate (A(m)); while the evergreen species had greater xylem-cavitation resistance, lower leaf turgor-loss point water potential (π(0)) and higher bulk modulus of elasticity. There were evolutionary correlations between leaf life span and stem hydraulic efficiency, A(m), and dry season π(0). Xylem-cavitation resistance was evolutionarily correlated with stem hydraulic efficiency, D(h), as well as dry season π(0). Both wood density and leaf density were closely correlated with leaf water-stress tolerance and A(m). CONCLUSIONS: The results reveal the clear distinctions in stem hydraulic traits and leaf water-stress tolerance between the co-occurring evergreen and deciduous angiosperm trees in an Asian dry karst forest. A novel pattern was demonstrated linking leaf longevity with stem hydraulic efficiency and leaf water-stress tolerance. The results show the correlated evolution in drought tolerance between stems and leaves.


Asunto(s)
Magnoliopsida/metabolismo , Magnoliopsida/fisiología , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Árboles , Asia , Magnoliopsida/clasificación , Filogenia , Hojas de la Planta/clasificación , Clima Tropical
20.
Ecol Lett ; 15(7): 666-72, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22489611

RESUMEN

Grasses such as bamboos can produce upright stems more than 30 m tall, yet the processes that constrain plant height in this important group have never been investigated. Air embolisms form commonly in the water transport system of grasses and we hypothesised that root pressure-dependent refilling these embolisms should limit the maximum height of grass species to the magnitude of their root pressure. Confirming this hypothesis, we show that in 59 species of bamboo grown in two common gardens, the maximum heights of culms of 67 clones are closely predicted by the maximum measured root pressure overnight. Furthermore, we demonstrate that water transport in these bamboo species is dependent on root pressure to repair hydraulic dysfunction sustained during normal diurnal gas exchange. Our results established the critical importance of root pressure in the tallest grass species and provide a new basis for understanding the limits for plant growth.


Asunto(s)
Bambusa/crecimiento & desarrollo , Raíces de Plantas/fisiología , Brotes de la Planta/crecimiento & desarrollo , Agua/fisiología , Ritmo Circadiano , Presión Osmótica , Transpiración de Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...