Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
bioRxiv ; 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37205335

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disorder affecting brain and spinal cord motor neurons. Mutations in the copper/zinc superoxide dismutase gene ( SOD1 ) are associated with ∼20% of inherited and 1-2% of sporadic ALS cases. Much has been learned from mice expressing transgenic copies of mutant SOD1, which typically involve high-level transgene expression, thereby differing from ALS patients expressing one mutant gene copy. To generate a model that more closely represents patient gene expression, we created a knock-in point mutation (G85R, a human ALS-causing mutation) in the endogenous mouse Sod1 gene, leading to mutant SOD1 G85R protein expression. Heterozygous Sod1 G85R mutant mice resemble wild type, whereas homozygous mutants have reduced body weight and lifespan, a mild neurodegenerative phenotype, and express very low mutant SOD1 protein levels with no detectable SOD1 activity. Homozygous mutants exhibit partial neuromuscular junction denervation at 3-4 months of age. Spinal cord motor neuron transcriptome analyses of homozygous Sod1 G85R mice revealed up-regulation of cholesterol synthesis pathway genes compared to wild type. Transcriptome and phenotypic features of these mice are similar to Sod1 knock-out mice, suggesting the Sod1 G85R phenotype is largely driven by loss of SOD1 function. By contrast, cholesterol synthesis genes are down-regulated in severely affected human TgSOD1 G93A transgenic mice at 4 months. Our analyses implicate dysregulation of cholesterol or related lipid pathway genes in ALS pathogenesis. The Sod1 G85R knock-in mouse is a useful ALS model to examine the importance of SOD1 activity in control of cholesterol homeostasis and motor neuron survival. SIGNIFICANCE STATEMENT: Amyotrophic lateral sclerosis is a devastating disease involving the progressive loss of motor neurons and motor function for which there is currently no cure. Understanding biological mechanisms leading to motor neuron death is critical for developing new treatments. Using a new knock-in mutant mouse model carrying a Sod1 mutation that causes ALS in patients, and in the mouse, causes a limited neurodegenerative phenotype similar to Sod1 loss-of-function, we show that cholesterol synthesis pathway genes are up-regulated in mutant motor neurons, whereas the same genes are down-regulated in transgenic SOD1 mice with a severe phenotype. Our data implicate dysregulation of cholesterol or other related lipid genes in ALS pathogenesis and provide new insights that could contribute to strategies for disease intervention.

2.
Nat Commun ; 13(1): 6286, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36271076

RESUMEN

A GGGGCC24+ hexanucleotide repeat expansion (HRE) in the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), fatal neurodegenerative diseases with no cure or approved treatments that substantially slow disease progression or extend survival. Mechanistic underpinnings of neuronal death include C9ORF72 haploinsufficiency, sequestration of RNA-binding proteins in the nucleus, and production of dipeptide repeat proteins. Here, we used an adeno-associated viral vector system to deliver CRISPR/Cas9 gene-editing machineries to effectuate the removal of the HRE from the C9ORF72 genomic locus. We demonstrate successful excision of the HRE in primary cortical neurons and brains of three mouse models containing the expansion (500-600 repeats) as well as in patient-derived iPSC motor neurons and brain organoids (450 repeats). This resulted in a reduction of RNA foci, poly-dipeptides and haploinsufficiency, major hallmarks of C9-ALS/FTD, making this a promising therapeutic approach to these diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Animales , Ratones , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Expansión de las Repeticiones de ADN/genética , Sistemas CRISPR-Cas , Neuronas Motoras/metabolismo , Dipéptidos/metabolismo , ARN/metabolismo
3.
J Biol Rhythms ; 37(1): 53-77, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35023384

RESUMEN

Circadian rhythms are endogenously generated physiological and molecular rhythms with a cycle length of about 24 h. Bioluminescent reporters have been exceptionally useful for studying circadian rhythms in numerous species. Here, we report development of a reporter mouse generated by modification of a widely expressed and highly rhythmic gene encoding D-site albumin promoter binding protein (Dbp). In this line of mice, firefly luciferase is expressed from the Dbp locus in a Cre recombinase-dependent manner, allowing assessment of bioluminescence rhythms in specific cellular populations. A mouse line in which luciferase expression was Cre-independent was also generated. The Dbp reporter alleles do not alter Dbp gene expression rhythms in liver or circadian locomotor activity rhythms. In vivo and ex vivo studies show the utility of the reporter alleles for monitoring rhythmicity. Our studies reveal cell-type-specific characteristics of rhythms among neuronal populations within the suprachiasmatic nuclei ex vivo. In vivo studies show Dbp-driven bioluminescence rhythms in the liver of Albumin-Cre;DbpKI/+ "liver reporter" mice. After a shift of the lighting schedule, locomotor activity achieved the proper phase relationship with the new lighting cycle more rapidly than hepatic bioluminescence did. As previously shown, restricting food access to the daytime altered the phase of hepatic rhythmicity. Our model allowed assessment of the rate of recovery from misalignment once animals were provided with food ad libitum. These studies confirm the previously demonstrated circadian misalignment following environmental perturbations and reveal the utility of this model for minimally invasive, longitudinal monitoring of rhythmicity from specific mouse tissues.


Asunto(s)
Ritmo Circadiano , Núcleo Supraquiasmático , Albúminas/genética , Albúminas/metabolismo , Animales , Ritmo Circadiano/genética , Genes Reporteros , Luciferasas/genética , Luciferasas/metabolismo , Ratones , Fotoperiodo , Núcleo Supraquiasmático/metabolismo
4.
Hum Gene Ther ; 33(1-2): 25-36, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34376056

RESUMEN

Huntington's disease (HD) is a devastating, autosomal dominant neurodegenerative disease caused by a trinucleotide repeat expansion in the huntingtin (HTT) gene. Inactivation of the mutant allele by clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 based gene editing offers a possible therapeutic approach for this disease, but permanent disruption of normal HTT function might compromise adult neuronal function. Here, we use a novel HD mouse model to examine allele-specific editing of mutant HTT (mHTT), with a BAC97 transgene expressing mHTT and a YAC18 transgene expressing normal HTT. We achieve allele-specific inactivation of HTT by targeting a protein coding sequence containing a common, heterozygous single nucleotide polymorphism (SNP). The outcome is a marked and allele-selective reduction of mHTT protein in a mouse model of HD. Expression of a single CRISPR-Cas9 nuclease in neurons generated a high frequency of mutations in the targeted HD allele that included both small insertion/deletion (InDel) mutations and viral vector insertions. Thus, allele-specific targeting of InDel and insertion mutations to heterozygous coding region SNPs provides a feasible approach to inactivate autosomal dominant mutations that cause genetic disease.


Asunto(s)
Enfermedad de Huntington , Alelos , Animales , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Enfermedad de Huntington/terapia , Ratones , Polimorfismo de Nucleótido Simple
5.
Nat Commun ; 9(1): 2641, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29980686

RESUMEN

RNA-based drugs depend on chemical modifications to increase potency and to decrease immunogenicity in vivo. Chemical modification will likely improve the guide RNAs involved in CRISPR-Cas9-based therapeutics as well. Cas9 orthologs are RNA-guided microbial effectors that cleave DNA. Here, we explore chemical modifications at all positions of the crRNA guide and tracrRNA cofactor. We identify several heavily modified versions of crRNA and tracrRNA that are more potent than their unmodified counterparts. In addition, we describe fully chemically modified crRNAs and tracrRNAs (containing no 2'-OH groups) that are functional in human cells. These designs will contribute to Cas9-based therapeutics since heavily modified RNAs tend to be more stable in vivo (thus increasing potency). We anticipate that our designs will improve the use of Cas9 via RNP and mRNA delivery for in vivo and ex vivo purposes.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Edición Génica , Genoma Humano/genética , ARN Guía de Kinetoplastida/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Sitios Genéticos , Células HEK293 , Humanos , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/genética
6.
Proc Natl Acad Sci U S A ; 115(11): 2788-2793, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29453277

RESUMEN

Chronic obstructive pulmonary disease affects 10% of the worldwide population, and the leading genetic cause is α-1 antitrypsin (AAT) deficiency. Due to the complexity of the murine locus, which includes up to six Serpina1 paralogs, no genetic animal model of the disease has been successfully generated until now. Here we create a quintuple Serpina1a-e knockout using CRISPR/Cas9-mediated genome editing. The phenotype recapitulates the human disease phenotype, i.e., absence of hepatic and circulating AAT translates functionally to a reduced capacity to inhibit neutrophil elastase. With age, Serpina1 null mice develop emphysema spontaneously, which can be induced in younger mice by a lipopolysaccharide challenge. This mouse models not only AAT deficiency but also emphysema and is a relevant genetic model and not one based on developmental impairment of alveolarization or elastase administration. We anticipate that this unique model will be highly relevant not only to the preclinical development of therapeutics for AAT deficiency, but also to emphysema and smoking research.


Asunto(s)
Enfisema Pulmonar/genética , alfa 1-Antitripsina/genética , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Hígado/metabolismo , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfisema Pulmonar/metabolismo , alfa 1-Antitripsina/metabolismo
8.
Diabetes ; 66(1): 145-157, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27999109

RESUMEN

The pathogenesis of human type 1 diabetes, characterized by immune-mediated damage of insulin-producing ß-cells of pancreatic islets, may involve viral infection. Essential components of the innate immune antiviral response, including type I interferon (IFN) and IFN receptor-mediated signaling pathways, are candidates for determining susceptibility to human type 1 diabetes. Numerous aspects of human type 1 diabetes pathogenesis are recapitulated in the LEW.1WR1 rat model. Diabetes can be induced in LEW.1WR1 weanling rats challenged with virus or with the viral mimetic polyinosinic:polycytidylic acid (poly I:C). We hypothesized that disrupting the cognate type I IFN receptor (type I IFN α/ß receptor [IFNAR]) to interrupt IFN signaling would prevent or delay the development of virus-induced diabetes. We generated IFNAR1 subunit-deficient LEW.1WR1 rats using CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-associated protein 9) genome editing and confirmed functional disruption of the Ifnar1 gene. IFNAR1 deficiency significantly delayed the onset and frequency of diabetes and greatly reduced the intensity of insulitis after poly I:C treatment. The occurrence of Kilham rat virus-induced diabetes was also diminished in IFNAR1-deficient animals. These findings firmly establish that alterations in innate immunity influence the course of autoimmune diabetes and support the use of targeted strategies to limit or prevent the development of type 1 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1/metabolismo , Receptor de Interferón alfa y beta/metabolismo , Animales , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiología , Células Cultivadas , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/virología , Femenino , Inmunidad Innata/genética , Inmunidad Innata/fisiología , Interferón Tipo I/metabolismo , Masculino , Parvovirus/genética , Parvovirus/fisiología , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor de Interferón alfa y beta/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
9.
G3 (Bethesda) ; 6(10): 3197-3206, 2016 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-27543296

RESUMEN

Adoption of a streamlined version of the bacterial clustered regular interspersed short palindromic repeat (CRISPR)/Cas9 defense system has accelerated targeted genome engineering. The Streptococcus pyogenes Cas9 protein, directed by a simplified, CRISPR-like single-guide RNA, catalyzes a double-stranded DNA break at a specific genomic site; subsequent repair by end joining can introduce mutagenic insertions or deletions, while repair by homologous recombination using an exogenous DNA template can incorporate new sequences at the target locus. However, the efficiency of Cas9-directed mutagenesis is low in Drosophila melanogaster Here, we describe a strategy that reduces the time and effort required to identify flies with targeted genomic changes. The strategy uses editing of the white gene, evidenced by altered eye color, to predict successful editing of an unrelated gene-of-interest. The red eyes of wild-type flies are readily distinguished from white-eyed (end-joining-mediated loss of White function) or brown-eyed (recombination-mediated conversion to the whitecoffee allele) mutant flies. When single injected G0 flies produce individual G1 broods, flies carrying edits at a gene-of-interest were readily found in broods in which all G1 offspring carried white mutations. Thus, visual assessment of eye color substitutes for wholesale PCR screening of large numbers of G1 offspring. We find that end-joining-mediated mutations often show signatures of microhomology-mediated repair and that recombination-based mutations frequently involve donor plasmid integration at the target locus. Finally, we show that gap repair induced by two guide RNAs more reliably converts the intervening target sequence, whereas the use of Lig4169 mutants to suppress end joining does not improve recombination efficacy.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Drosophila melanogaster/genética , Edición Génica , Estudios de Asociación Genética , Pruebas Genéticas , Genoma de los Insectos , Animales , Reparación del ADN , Femenino , Sitios Genéticos , Genotipo , Recombinación Homóloga , Mutación INDEL , Masculino , Mutagénesis Insercional , Mutación , Plásmidos , ARN Guía de Kinetoplastida
10.
Nat Methods ; 12(12): 1150-6, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26480473

RESUMEN

The CRISPR-Cas9 system is commonly used in biomedical research; however, the precision of Cas9 is suboptimal for applications that involve editing a large population of cells (for example, gene therapy). Variations on the standard Cas9 system have yielded improvements in the precision of targeted DNA cleavage, but they often restrict the range of targetable sequences. It remains unclear whether these variants can limit lesions to a single site in the human genome over a large cohort of treated cells. Here we show that by fusing a programmable DNA-binding domain (pDBD) to Cas9 and attenuating Cas9's inherent DNA-binding affinity, we were able to produce a Cas9-pDBD chimera with dramatically improved precision and an increased targeting range. Because the specificity and affinity of this framework can be easily tuned, Cas9-pDBDs provide a flexible system that can be tailored to achieve extremely precise genome editing at nearly any genomic locus.


Asunto(s)
Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Proteínas de Unión al ADN/genética , Marcación de Gen , División del ADN , Marcación de Gen/métodos , Células HEK293 , Humanos , ARN Guía de Kinetoplastida/genética , Activación Transcripcional , Transfección , Dedos de Zinc/genética
11.
PLoS One ; 9(9): e108424, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25247697

RESUMEN

CRISPR-Cas systems are a diverse family of RNA-protein complexes in bacteria that target foreign DNA sequences for cleavage. Derivatives of these complexes have been engineered to cleave specific target sequences depending on the sequence of a CRISPR-derived guide RNA (gRNA) and the source of the Cas9 protein. Important considerations for the design of gRNAs are to maximize aimed activity at the desired target site while minimizing off-target cleavage. Because of the rapid advances in the understanding of existing CRISPR-Cas9-derived RNA-guided nucleases and the development of novel RNA-guided nuclease systems, it is critical to have computational tools that can accommodate a wide range of different parameters for the design of target-specific RNA-guided nuclease systems. We have developed CRISPRseek, a highly flexible, open source software package to identify gRNAs that target a given input sequence while minimizing off-target cleavage at other sites within any selected genome. CRISPRseek will identify potential gRNAs that target a sequence of interest for CRISPR-Cas9 systems from different bacterial species and generate a cleavage score for potential off-target sequences utilizing published or user-supplied weight matrices with position-specific mismatch penalty scores. Identified gRNAs may be further filtered to only include those that occur in paired orientations for increased specificity and/or those that overlap restriction enzyme sites. For applications where gRNAs are desired to discriminate between two related sequences, CRISPRseek can rank gRNAs based on the difference between predicted cleavage scores in each input sequence. CRISPRseek is implemented as a Bioconductor package within the R statistical programming environment, allowing it to be incorporated into computational pipelines to automate the design of gRNAs for target sequences identified in a wide variety of genome-wide analyses. CRISPRseek is available under the GNU General Public Licence v3.0 at http://www.bioconductor.org.


Asunto(s)
Sistemas CRISPR-Cas , Biología Computacional/métodos , Edición de ARN , ARN Guía de Kinetoplastida/genética , Programas Informáticos , Secuencia de Bases , Proteínas Asociadas a CRISPR/metabolismo , Genómica , Humanos , Proteína Huntingtina , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Polimorfismo de Nucleótido Simple , Homología de Secuencia de Ácido Nucleico , Especificidad por Sustrato
12.
Nucleic Acids Res ; 42(8): 4800-12, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24523353

RESUMEN

Cys(2)-His(2) zinc finger proteins (ZFPs) are the largest family of transcription factors in higher metazoans. They also represent the most diverse family with regards to the composition of their recognition sequences. Although there are a number of ZFPs with characterized DNA-binding preferences, the specificity of the vast majority of ZFPs is unknown and cannot be directly inferred by homology due to the diversity of recognition residues present within individual fingers. Given the large number of unique zinc fingers and assemblies present across eukaryotes, a comprehensive predictive recognition model that could accurately estimate the DNA-binding specificity of any ZFP based on its amino acid sequence would have great utility. Toward this goal, we have used the DNA-binding specificities of 678 two-finger modules from both natural and artificial sources to construct a random forest-based predictive model for ZFP recognition. We find that our recognition model outperforms previously described determinant-based recognition models for ZFPs, and can successfully estimate the specificity of naturally occurring ZFPs with previously defined specificities.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Elementos Reguladores de la Transcripción , Factores de Transcripción/metabolismo , Dedos de Zinc , Inteligencia Artificial , Sitios de Unión , ADN/química , Proteínas de Unión al ADN/química , Modelos Biológicos , Motivos de Nucleótidos , Factores de Transcripción/química
13.
Mol Biol Evol ; 31(1): 184-200, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24097306

RESUMEN

There is growing interest in models of regulatory sequence evolution. However, existing models specifically designed for regulatory sequences consider the independent evolution of individual transcription factor (TF)-binding sites, ignoring that the function and evolution of a binding site depends on its context, typically the cis-regulatory module (CRM) in which the site is located. Moreover, existing models do not account for the gene-specific roles of TF-binding sites, primarily because their roles often are not well understood. We introduce two models of regulatory sequence evolution that address some of the shortcomings of existing models and implement simulation frameworks based on them. One model simulates the evolution of an individual binding site in the context of a CRM, while the other evolves an entire CRM. Both models use a state-of-the art sequence-to-expression model to predict the effects of mutations on the regulatory output of the CRM and determine the strength of selection. We use the new framework to simulate the evolution of TF-binding sites in 37 well-studied CRMs belonging to the anterior-posterior patterning system in Drosophila embryos. We show that these simulations provide accurate fits to evolutionary data from 12 Drosophila genomes, which includes statistics of binding site conservation on relatively short evolutionary scales and site loss across larger divergence times. The new framework allows us, for the first time, to test hypotheses regarding the underlying cis-regulatory code by directly comparing the evolutionary implications of the hypothesis with the observed evolutionary dynamics of binding sites. Using this capability, we find that explicitly modeling self-cooperative DNA binding by the TF Caudal (CAD) provides significantly better fits than an otherwise identical evolutionary simulation that lacks this mechanistic aspect. This hypothesis is further supported by a statistical analysis of the distribution of intersite spacing between adjacent CAD sites. Experimental tests confirm direct homodimeric interaction between CAD molecules as well as self-cooperative DNA binding by CAD. We note that computational modeling of the D. melanogaster CRMs alone did not yield significant evidence to support CAD self-cooperativity. We thus demonstrate how specific mechanistic details encoded in CRMs can be revealed by modeling their evolution and fitting such models to multispecies data.


Asunto(s)
Simulación por Computador , Elementos de Facilitación Genéticos , Evolución Molecular , Regulación de la Expresión Génica , Animales , Sitios de Unión/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genoma , Modelos Genéticos , Unión Proteica , Análisis de Secuencia de ADN
14.
PLoS Genet ; 9(8): e1003571, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23935523

RESUMEN

ChIP-based genome-wide assays of transcription factor (TF) occupancy have emerged as a powerful, high-throughput method to understand transcriptional regulation, especially on a global scale. This has led to great interest in the underlying biochemical mechanisms that direct TF-DNA binding, with the ultimate goal of computationally predicting a TF's occupancy profile in any cellular condition. In this study, we examined the influence of various potential determinants of TF-DNA binding on a much larger scale than previously undertaken. We used a thermodynamics-based model of TF-DNA binding, called "STAP," to analyze 45 TF-ChIP data sets from Drosophila embryonic development. We built a cross-validation framework that compares a baseline model, based on the ChIP'ed ("primary") TF's motif, to more complex models where binding by secondary TFs is hypothesized to influence the primary TF's occupancy. Candidates interacting TFs were chosen based on RNA-SEQ expression data from the time point of the ChIP experiment. We found widespread evidence of both cooperative and antagonistic effects by secondary TFs, and explicitly quantified these effects. We were able to identify multiple classes of interactions, including (1) long-range interactions between primary and secondary motifs (separated by ≤150 bp), suggestive of indirect effects such as chromatin remodeling, (2) short-range interactions with specific inter-site spacing biases, suggestive of direct physical interactions, and (3) overlapping binding sites suggesting competitive binding. Furthermore, by factoring out the previously reported strong correlation between TF occupancy and DNA accessibility, we were able to categorize the effects into those that are likely to be mediated by the secondary TF's effect on local accessibility and those that utilize accessibility-independent mechanisms. Finally, we conducted in vitro pull-down assays to test model-based predictions of short-range cooperative interactions, and found that seven of the eight TF pairs tested physically interact and that some of these interactions mediate cooperative binding to DNA.


Asunto(s)
Proteínas de Unión al ADN/genética , ADN/genética , Drosophila/genética , Desarrollo Embrionario/genética , Factores de Transcripción/genética , Algoritmos , Animales , Sitios de Unión , Ensamble y Desensamble de Cromatina/genética , Biología Computacional , Drosophila/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Genoma
15.
Nucleic Acids Res ; 41(17): 8237-52, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23847101

RESUMEN

Regulation of eukaryotic gene transcription is often combinatorial in nature, with multiple transcription factors (TFs) regulating common target genes, often through direct or indirect mutual interactions. Many individual examples of cooperative binding by directly interacting TFs have been identified, but it remains unclear how pervasive this mechanism is during animal development. Cooperative TF binding should be manifest in genomic sequences as biased arrangements of TF-binding sites. Here, we explore the extent and diversity of such arrangements related to gene regulation during Drosophila embryogenesis. We used the DNA-binding specificities of 322 TFs along with chromatin accessibility information to identify enriched spacing and orientation patterns of TF-binding site pairs. We developed a new statistical approach for this task, specifically designed to accurately assess inter-site spacing biases while accounting for the phenomenon of homotypic site clustering commonly observed in developmental regulatory regions. We observed a large number of short-range distance preferences between TF-binding site pairs, including examples where the preference depends on the relative orientation of the binding sites. To test whether these binding site patterns reflect physical interactions between the corresponding TFs, we analyzed 27 TF pairs whose binding sites exhibited short distance preferences. In vitro protein-protein binding experiments revealed that >65% of these TF pairs can directly interact with each other. For five pairs, we further demonstrate that they bind cooperatively to DNA if both sites are present with the preferred spacing. This study demonstrates how DNA-binding motifs can be used to produce a comprehensive map of sequence signatures for different mechanisms of combinatorial TF action.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Desarrollo Embrionario/genética , Factores de Transcripción/metabolismo , Animales , Sitios de Unión , ADN/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genómica/métodos , Unión Proteica , Análisis de Secuencia de ADN , Factores de Transcripción/clasificación
16.
Genome Res ; 23(6): 928-40, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23471540

RESUMEN

Cys2-His2 zinc finger proteins (ZFPs) are the largest group of transcription factors in higher metazoans. A complete characterization of these ZFPs and their associated target sequences is pivotal to fully annotate transcriptional regulatory networks in metazoan genomes. As a first step in this process, we have characterized the DNA-binding specificities of 129 zinc finger sets from Drosophila using a bacterial one-hybrid system. This data set contains the DNA-binding specificities for at least one encoded ZFP from 70 unique genes and 23 alternate splice isoforms representing the largest set of characterized ZFPs from any organism described to date. These recognition motifs can be used to predict genomic binding sites for these factors within the fruit fly genome. Subsets of fingers from these ZFPs were characterized to define their orientation and register on their recognition sequences, thereby allowing us to define the recognition diversity within this finger set. We find that the characterized fingers can specify 47 of the 64 possible DNA triplets. To confirm the utility of our finger recognition models, we employed subsets of Drosophila fingers in combination with an existing archive of artificial zinc finger modules to create ZFPs with novel DNA-binding specificity. These hybrids of natural and artificial fingers can be used to create functional zinc finger nucleases for editing vertebrate genomes.


Asunto(s)
Sitios de Unión , Proteínas de Drosophila/genética , Drosophila/genética , Motivos de Nucleótidos , Dedos de Zinc/genética , Empalme Alternativo , Animales , Secuencia de Bases , Análisis por Conglomerados , Biología Computacional/métodos , Proteínas de Drosophila/química , Proteínas de Drosophila/clasificación , Modelos Moleculares , Filogenia , Posición Específica de Matrices de Puntuación , Unión Proteica , Conformación Proteica
17.
Bioinformatics ; 28(12): i84-9, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22689783

RESUMEN

MOTIVATION: Recognition models for protein-DNA interactions, which allow the prediction of specificity for a DNA-binding domain based only on its sequence or the alteration of specificity through rational design, have long been a goal of computational biology. There has been some progress in constructing useful models, especially for C(2)H(2) zinc finger proteins, but it remains a challenging problem with ample room for improvement. For most families of transcription factors the best available methods utilize k-nearest neighbor (KNN) algorithms to make specificity predictions based on the average of the specificities of the k most similar proteins with defined specificities. Homeodomain (HD) proteins are the second most abundant family of transcription factors, after zinc fingers, in most metazoan genomes, and as a consequence an effective recognition model for this family would facilitate predictive models of many transcriptional regulatory networks within these genomes. RESULTS: Using extensive experimental data, we have tested several machine learning approaches and find that both support vector machines and random forests (RFs) can produce recognition models for HD proteins that are significant improvements over KNN-based methods. Cross-validation analyses show that the resulting models are capable of predicting specificities with high accuracy. We have produced a web-based prediction tool, PreMoTF (Predicted Motifs for Transcription Factors) (http://stormo.wustl.edu/PreMoTF), for predicting position frequency matrices from protein sequence using a RF-based model.


Asunto(s)
Inteligencia Artificial , Biología Computacional/métodos , ADN/química , Proteínas de Homeodominio/química , Algoritmos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Drosophila , Humanos , Ratones , Modelos Estadísticos , Alineación de Secuencia , Máquina de Vectores de Soporte , Factores de Transcripción/química , Dedos de Zinc
18.
PLoS Genet ; 7(10): e1002315, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22022278

RESUMEN

DNA repair mechanisms in mitotically proliferating cells avoid generating crossovers, which can contribute to genome instability. Most models for the production of crossovers involve an intermediate with one or more four-stranded Holliday junctions (HJs), which are resolved into duplex molecules through cleavage by specialized endonucleases. In vitro studies have implicated three nuclear enzymes in HJ resolution: MUS81-EME1/Mms4, GEN1/Yen1, and SLX4-SLX1. The Bloom syndrome helicase, BLM, plays key roles in preventing mitotic crossover, either by blocking the formation of HJ intermediates or by removing HJs without cleavage. Saccharomyces cerevisiae mutants that lack Sgs1 (the BLM ortholog) and either Mus81-Mms4 or Slx4-Slx1 are inviable, but mutants that lack Sgs1 and Yen1 are viable. The current view is that Yen1 serves primarily as a backup to Mus81-Mms4. Previous studies with Drosophila melanogaster showed that, as in yeast, loss of both DmBLM and MUS81 or MUS312 (the ortholog of SLX4) is lethal. We have now recovered and analyzed mutations in Drosophila Gen. As in yeast, there is some redundancy between Gen and mus81; however, in contrast to the case in yeast, GEN plays a more predominant role in responding to DNA damage than MUS81-MMS4. Furthermore, loss of DmBLM and GEN leads to lethality early in development. We present a comparison of phenotypes occurring in double mutants that lack DmBLM and either MUS81, GEN, or MUS312, including chromosome instability and deficiencies in cell proliferation. Our studies of synthetic lethality provide insights into the multiple functions of DmBLM and how various endonucleases may function when DmBLM is absent.


Asunto(s)
ADN Helicasas/genética , ADN Cruciforme/genética , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Endonucleasas/genética , Genes Letales , Animales , Inestabilidad Cromosómica/genética , ADN Helicasas/metabolismo , Reparación del ADN/genética , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Endonucleasas/metabolismo , Inestabilidad Genómica , Mitosis , Mutación , Fenotipo
19.
Nucleic Acids Res ; 39(Web Server issue): W79-85, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21593125

RESUMEN

Genome Surveyor 2.0 is a web-based tool for discovery and analysis of cis-regulatory elements in Drosophila, built on top of the GBrowse genome browser for convenient visualization. Genome Surveyor was developed as a tool for predicting transcription factor (TF) binding targets and cis-regulatory modules (CRMs/enhancers), based on motifs representing experimentally determined DNA binding specificities. Since its first publication, we have added substantial new functionality (e.g. phylogenetic averaging of motif scores from multiple species, and a novel CRM discovery technique), increased the number of supported motifs about 4-fold (from ∼100 to ∼400), added provisions for evolutionary comparison across many more Drosophila species (from 2 to 12), and improved the user-interface. The server is free and open to all users, and there is no login requirement. Address: http://veda.cs.uiuc.edu/gs.


Asunto(s)
Drosophila melanogaster/genética , Genoma de los Insectos , Elementos Reguladores de la Transcripción , Programas Informáticos , Animales , Sitios de Unión , Drosophila/genética , Factores de Transcripción/metabolismo , Interfaz Usuario-Computador
20.
Nucleic Acids Res ; 39(Database issue): D111-7, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21097781

RESUMEN

FlyFactorSurvey (http://pgfe.umassmed.edu/TFDBS/) is a database of DNA binding specificities for Drosophila transcription factors (TFs) primarily determined using the bacterial one-hybrid system. The database provides community access to over 400 recognition motifs and position weight matrices for over 200 TFs, including many unpublished motifs. Search tools and flat file downloads are provided to retrieve binding site information (as sequences, matrices and sequence logos) for individual TFs, groups of TFs or for all TFs with characterized binding specificities. Linked analysis tools allow users to identify motifs within our database that share similarity to a query matrix or to view the distribution of occurrences of an individual motif throughout the Drosophila genome. Together, this database and its associated tools provide computational and experimental biologists with resources to predict interactions between Drosophila TFs and target cis-regulatory sequences.


Asunto(s)
Bases de Datos Genéticas , Proteínas de Drosophila/metabolismo , Drosophila/genética , Elementos Reguladores de la Transcripción , Factores de Transcripción/metabolismo , Animales , Bacterias/genética , Sitios de Unión , Programas Informáticos , Técnicas del Sistema de Dos Híbridos , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...