Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 5(1): 781, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35918603

RESUMEN

Males exhibit higher incidence and worse prognosis for the majority of cancers, including glioblastoma (GBM). Disparate survival may be related to sex-biased responses to treatment, including radiation. Using a mouse model of GBM, we show that female cells are more sensitive to radiation, and that senescence represents a major component of the radiation therapeutic response in both sexes. Correlation analyses revealed that the CDK inhibitor p21 and irradiation induced senescence were differentially regulated between male and female cells. Indeed, female cellular senescence was more sensitive to changes in p21 levels, a finding that was observed in wildtype and transformed murine astrocytes, as well as patient-derived GBM cell lines. Using a novel Four Core Genotypes model of GBM, we further show that sex differences in p21-induced senescence are patterned during early development by gonadal sex. These data provide a rationale for the further study of sex differences in radiation response and how senescence might be enhanced for radiation sensitization. The determination that p21 and gonadal sex are required for sex differences in radiation response will serve as a foundation for these future mechanistic studies.


Asunto(s)
Glioblastoma , Animales , Astrocitos/metabolismo , Línea Celular Tumoral , Senescencia Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Masculino , Ratones
2.
Endocrinology ; 162(11)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34478502

RESUMEN

Significant sex differences exist across cellular, tissue organization, and body system scales to serve the distinct sex-specific functions required for reproduction. They are present in all animals that reproduce sexually and have widespread impacts on normal development, aging, and disease. Observed from the moment of fertilization, sex differences are patterned by sexual differentiation, a lifelong process that involves mechanisms related to sex chromosome complement and the epigenetic and acute activational effects of sex hormones. In this mini-review, we examine evidence for sex differences in cellular responses to DNA damage, their underlying mechanisms, and how they might relate to sex differences in cancer incidence and response to DNA-damaging treatments.


Asunto(s)
Daño del ADN/fisiología , Reparación del ADN/fisiología , Diferenciación Sexual/fisiología , Adaptación Fisiológica/fisiología , Envejecimiento/fisiología , Animales , Femenino , Hormonas Esteroides Gonadales/metabolismo , Hormonas Esteroides Gonadales/fisiología , Humanos , Masculino , Caracteres Sexuales
3.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33850013

RESUMEN

Sex can be an important determinant of cancer phenotype, and exploring sex-biased tumor biology holds promise for identifying novel therapeutic targets and new approaches to cancer treatment. In an established isogenic murine model of glioblastoma (GBM), we discovered correlated transcriptome-wide sex differences in gene expression, H3K27ac marks, large Brd4-bound enhancer usage, and Brd4 localization to Myc and p53 genomic binding sites. These sex-biased gene expression patterns were also evident in human glioblastoma stem cells (GSCs). These observations led us to hypothesize that Brd4-bound enhancers might underlie sex differences in stem cell function and tumorigenicity in GBM. We found that male and female GBM cells exhibited sex-specific responses to pharmacological or genetic inhibition of Brd4. Brd4 knockdown or pharmacologic inhibition decreased male GBM cell clonogenicity and in vivo tumorigenesis while increasing both in female GBM cells. These results were validated in male and female patient-derived GBM cell lines. Furthermore, analysis of the Cancer Therapeutic Response Portal of human GBM samples segregated by sex revealed that male GBM cells are significantly more sensitive to BET (bromodomain and extraterminal) inhibitors than are female cells. Thus, Brd4 activity is revealed to drive sex differences in stem cell and tumorigenic phenotypes, which can be abrogated by sex-specific responses to BET inhibition. This has important implications for the clinical evaluation and use of BET inhibitors.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Glioblastoma/metabolismo , Proteínas Nucleares/metabolismo , Factores Sexuales , Factores de Transcripción/metabolismo , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Femenino , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Glioblastoma/genética , Histonas/metabolismo , Humanos , Masculino , Ratones , Proteínas Nucleares/fisiología , Unión Proteica , Proteínas Proto-Oncogénicas c-myc/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Caracteres Sexuales , Factores de Transcripción/fisiología , Proteína p53 Supresora de Tumor/metabolismo
4.
Sci Transl Med ; 12(558)2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32848093

RESUMEN

A major sex difference in Alzheimer's disease (AD) is that men with the disease die earlier than do women. In aging and preclinical AD, men also show more cognitive deficits. Here, we show that the X chromosome affects AD-related vulnerability in mice expressing the human amyloid precursor protein (hAPP), a model of AD. XY-hAPP mice genetically modified to develop testicles or ovaries showed worse mortality and deficits than did XX-hAPP mice with either gonad, indicating a sex chromosome effect. To dissect whether the absence of a second X chromosome or the presence of a Y chromosome conferred a disadvantage on male mice, we varied sex chromosome dosage. With or without a Y chromosome, hAPP mice with one X chromosome showed worse mortality and deficits than did those with two X chromosomes. Thus, adding a second X chromosome conferred resilience to XY males and XO females. In addition, the Y chromosome, its sex-determining region Y gene (Sry), or testicular development modified mortality in hAPP mice with one X chromosome such that XY males with testicles survived longer than did XY or XO females with ovaries. Furthermore, a second X chromosome conferred resilience potentially through the candidate gene Kdm6a, which does not undergo X-linked inactivation. In humans, genetic variation in KDM6A was linked to higher brain expression and associated with less cognitive decline in aging and preclinical AD, suggesting its relevance to human brain health. Our study suggests a potential role for sex chromosomes in modulating disease vulnerability related to AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/genética , Animales , Femenino , Masculino , Ratones , Caracteres Sexuales , Testículo , Cromosoma X/genética , Cromosoma Y
5.
Biol Sex Differ ; 11(1): 17, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32295632

RESUMEN

We now know that cancer is many different diseases, with great variation even within a single histological subtype. With the current emphasis on developing personalized approaches to cancer treatment, it is astonishing that we have not yet systematically incorporated the biology of sex differences into our paradigms for laboratory and clinical cancer research. While some sex differences in cancer arise through the actions of circulating sex hormones, other sex differences are independent of estrogen, testosterone, or progesterone levels. Instead, these differences are the result of sexual differentiation, a process that involves genetic and epigenetic mechanisms, in addition to acute sex hormone actions. Sexual differentiation begins with fertilization and continues beyond menopause. It affects virtually every body system, resulting in marked sex differences in such areas as growth, lifespan, metabolism, and immunity, all of which can impact on cancer progression, treatment response, and survival. These organismal level differences have correlates at the cellular level, and thus, males and females can fundamentally differ in their protections and vulnerabilities to cancer, from cellular transformation through all stages of progression, spread, and response to treatment. Our goal in this review is to cover some of the robust sex differences that exist in core cancer pathways and to make the case for inclusion of sex as a biological variable in all laboratory and clinical cancer research. We finish with a discussion of lab- and clinic-based experimental design that should be used when testing whether sex matters and the appropriate statistical models to apply in data analysis for rigorous evaluations of potential sex effects. It is our goal to facilitate the evaluation of sex differences in cancer in order to improve outcomes for all patients.


Asunto(s)
Neoplasias , Caracteres Sexuales , Animales , Senescencia Celular , Epigenómica , Humanos , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Neovascularización Patológica/genética , Neovascularización Patológica/inmunología , Neovascularización Patológica/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
6.
eNeuro ; 5(6)2018.
Artículo en Inglés | MEDLINE | ID: mdl-30627643

RESUMEN

Alzheimer's disease (AD) begins several decades before the onset of clinical symptoms, at a time when women may still undergo reproductive cycling. Whether ovarian functions alter substrates of AD pathogenesis is unknown. Here we show that ovarian cycle stages significantly modulate AD-related alterations in neural network patterns, cognitive impairments, and pathogenic protein production in the hAPP-J20 mouse model of AD. Female hAPP mice spent more time in estrogen-dominant cycle stages and these ovarian stages worsened AD-related network dysfunction and cognitive impairments. In contrast, progesterone-dominant stages and gonadectomy attenuated these AD-related deficits. Further studies revealed a direct role for estradiol in stimulating neural network excitability and susceptibility to seizures in hAPP mice and increasing amyloid beta levels. Understanding dynamic effects of the ovarian cycle on the female nervous system in disease, including AD, is of critical importance and may differ from effects on a healthy brain. The pattern of ovarian cycle effects on disease-related networks, cognition, and pathogenic protein expression may be relevant to young women at risk for AD.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Ondas Encefálicas/fisiología , Encéfalo/patología , Trastornos del Conocimiento , Ciclo Menstrual/fisiología , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Castración , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/patología , Trastornos del Conocimiento/fisiopatología , Convulsivantes/toxicidad , Modelos Animales de Enfermedad , Estradiol/metabolismo , Conducta Exploratoria/fisiología , Femenino , Humanos , Ciclo Menstrual/genética , Ratones , Ratones Transgénicos , Mutación/genética , Pentilenotetrazol/toxicidad , Progesterona/metabolismo , Convulsiones/inducido químicamente , Convulsiones/fisiopatología
7.
Brain Pathol ; 28(4): 484-494, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-28921714

RESUMEN

Sex differences in cancer incidence and survival, including central nervous system tumors, are well documented. Multiple mechanisms contribute to sex differences in health and disease. Recently, the presence of fetal-in-maternal microchimeric cells has been shown to have prognostic significance in breast and colorectal cancers. The frequency and potential role of these cells has not been investigated in brain tumors. We therefore selected two common primary adult brain tumors for this purpose: meningioma, which is sex hormone responsive and has a higher incidence in women, and glioblastoma, which is sex hormone independent and occurs more commonly in men. Quantitative PCR was used to detect the presence of male DNA in tumor samples from women with a positive history of male pregnancy and a diagnosis of either glioblastoma or meningioma. Fluorescence in situ hybridization for the X and Y chromosomes was used to verify the existence of intact male cells within tumor tissue. Fetal microchimerism was found in approximately 80% of glioblastoma cases and 50% of meningioma cases. No correlations were identified between the presence of microchimerism and commonly used clinical or molecular diagnostic features of disease. The impact of fetal microchimeric cells should be evaluated prospectively.


Asunto(s)
Neoplasias Encefálicas/genética , Quimerismo , Feto/citología , Glioblastoma/genética , Neoplasias Meníngeas/genética , Meningioma/genética , Adulto , Anciano , Neoplasias Encefálicas/patología , ADN/análisis , Femenino , Glioblastoma/patología , Humanos , Masculino , Neoplasias Meníngeas/patología , Meningioma/patología , Persona de Mediana Edad , Embarazo , Análisis de Supervivencia
8.
J Neurosci ; 35(6): 2358-71, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25673831

RESUMEN

Aging is the principal demographic risk factor for Alzheimer disease (AD), the most common neurodegenerative disorder. Klotho is a key modulator of the aging process and, when overexpressed, extends mammalian lifespan, increases synaptic plasticity, and enhances cognition. Whether klotho can counteract deficits related to neurodegenerative diseases, such as AD, is unknown. Here we show that elevating klotho expression decreases premature mortality and network dysfunction in human amyloid precursor protein (hAPP) transgenic mice, which simulate key aspects of AD. Increasing klotho levels prevented depletion of NMDA receptor (NMDAR) subunits in the hippocampus and enhanced spatial learning and memory in hAPP mice. Klotho elevation in hAPP mice increased the abundance of the GluN2B subunit of NMDAR in postsynaptic densities and NMDAR-dependent long-term potentiation, which is critical for learning and memory. Thus, increasing wild-type klotho levels or activities improves synaptic and cognitive functions, and may be of therapeutic benefit in AD and other cognitive disorders.


Asunto(s)
Precursor de Proteína beta-Amiloide/fisiología , Cognición/fisiología , Glucuronidasa/fisiología , Longevidad/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Conducta Animal/fisiología , Trastornos del Conocimiento/genética , Trastornos del Conocimiento/psicología , Humanos , Proteínas Klotho , Longevidad/fisiología , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Transgénicos , Red Nerviosa/patología , Receptores de N-Metil-D-Aspartato/fisiología , Sinapsis/patología , Proteínas tau/metabolismo
9.
Cell Rep ; 7(4): 1065-76, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24813892

RESUMEN

Aging is the primary risk factor for cognitive decline, an emerging health threat to aging societies worldwide. Whether anti-aging factors such as klotho can counteract cognitive decline is unknown. We show that a lifespan-extending variant of the human KLOTHO gene, KL-VS, is associated with enhanced cognition in heterozygous carriers. Because this allele increased klotho levels in serum, we analyzed transgenic mice with systemic overexpression of klotho. They performed better than controls in multiple tests of learning and memory. Elevating klotho in mice also enhanced long-term potentiation, a form of synaptic plasticity, and enriched synaptic GluN2B, an N-methyl-D-aspartate receptor (NMDAR) subunit with key functions in learning and memory. Blockade of GluN2B abolished klotho-mediated effects. Surprisingly, klotho effects were evident also in young mice and did not correlate with age in humans, suggesting independence from the aging process. Augmenting klotho or its effects may enhance cognition and counteract cognitive deficits at different life stages.


Asunto(s)
Cognición/fisiología , Glucuronidasa/fisiología , Factores de Edad , Anciano , Anciano de 80 o más Años , Animales , Estudios de Cohortes , Femenino , Glucuronidasa/genética , Glucuronidasa/metabolismo , Humanos , Proteínas Klotho , Esperanza de Vida , Masculino , Memoria/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo
10.
Neurohospitalist ; 3(4): 229-30, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24198906
11.
Biol Sex Differ ; 3(1): 24, 2012 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-23126652

RESUMEN

Biologic sex and gonadal hormones matter in human aging and diseases of aging such as Alzheimer's - and the importance of studying their influences relates directly to human health. The goal of this article is to review the literature to date on sex and hormones in mouse models of Alzheimer's disease (AD) with an exclusive focus on interpreting the relevance of findings to the human condition. To this end, we highlight advances in AD and in sex and hormone biology, discuss what these advances mean for merging the two fields, review the current mouse model literature, raise major unresolved questions, and offer a research framework that incorporates human reproductive aging for future studies aimed at translational discoveries in this important area. Unraveling human relevant pathways in sex and hormone-based biology may ultimately pave the way to novel and urgently needed treatments for AD and other neurodegenerative diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA