Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38606986

RESUMEN

Condylar resorption is an aggressive and disability form of temporomandibular joint (TMJ) degenerative disease, usually non-respondent to conservative or minimally invasive therapies and often leading to surgical intervention and prostheses implantation. This condition is also one of the most dreaded postoperative complications of orthognathic surgery, with severe cartilage erosion and loss of subchondral bone volume and mineral density, associated with a painful or not inflammatory processes. Because regenerative medicine has emerged as an alternative for orthopedic cases with advanced degenerative joint disease, we conducted a phase I/IIa clinical trial (U1111-1194-6997) to evaluate the safety and efficacy of autologous nasal septal chondroprogenitor cells. Ten participants underwent biopsy of the nasal septum cartilage during their orthognathic surgery. The harvested cells were cultured in vitro and analyzed for viability, presence of phenotype markers for mesenchymal stem and/or chondroprogenitor cells, and the potential to differentiate into chondrocytes, adipocytes, and osteoblasts. After the intra-articular injection of the cell therapy, clinical follow-up was performed using the Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) and computed tomography (CT) images. No serious adverse events related to the cell therapy injection were observed during the 12-month follow-up period. It was found that autologous chondroprogenitors reduced arthralgia, promoted stabilization of mandibular function and condylar volume, and regeneration of condylar tissues. This study demonstrates that chondroprogenitor cells from the nasal septum may be a promise strategy for the treatment of temporomandibular degenerative joint disease that do not respond to other conservative therapies.

2.
Polymers (Basel) ; 15(24)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38139880

RESUMEN

Polylactic Acid (PLA) and Acrylonitrile-Butadiene-Styrene (ABS) are commonly used polymers in 3D printing for biomedical applications. Dental Pulp Stem Cells (DPSCs) are an accessible and proliferative source of stem cells with significant differentiation potential. Limited knowledge exists regarding the biocompatibility and genetic safety of ABS and PLA when in contact with DPSCs. This study aimed to investigate the impact of PLA and ABS on the adhesion, proliferation, osteogenic differentiation, genetic stability, proteomics, and immunophenotypic profile of DPSCs. A total of three groups, 1- DPSC-control, 2- DPSC+ABS, and 3- DPSC+PLA, were used in in vitro experiments to evaluate cell morphology, proliferation, differentiation capabilities, genetic stability, proteomics (secretome), and immunophenotypic profiles regarding the interaction between DPSCs and polymers. Both ABS and PLA supported the adhesion and proliferation of DPSCs without exhibiting significant cytotoxic effects and maintaining the capacity for osteogenic differentiation. Genetic stability, proteomics, and immunophenotypic profiles were unaltered in DPSCs post-contact with these polymers, highlighting their biosafety. Our findings suggest that ABS and PLA are biocompatible with DPSCs and demonstrate potential in dental or orthopedic applications; the choice of the polymer will depend on the properties required in treatment. These promising results stimulate further studies to explore the potential therapeutic applications in vivo using prototyped polymers in personalized medicine.

4.
Int J Mol Sci ; 24(16)2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37629136

RESUMEN

Mesenchymal stromal cells (MSCs) have been considered a therapeutic strategy in regenerative medicine because of their regenerative and immunomodulatory properties. The translation of MSC-based products has some challenges, such as regulatory and scientific issues. Quality control should be standardized and optimized to guarantee the reproducibility, safety, and efficacy of MSC-based products to be administered to patients. The aim of this study was to develop MSC-based products for use in clinical practice. Quality control assays include cell characterization, cell viability, immunogenicity, and cell differentiation; safety tests such as procoagulant tissue factor (TF), microbiological, mycoplasma, endotoxin, genomic stability, and tumorigenicity tests; and potency tests. The results confirm that the cells express MSC markers; an average cell viability of 96.9%; a low expression of HLA-DR and costimulatory molecules; differentiation potential; a high expression of TF/CD142; an absence of pathogenic microorganisms; negative endotoxins; an absence of chromosomal abnormalities; an absence of genotoxicity and tumorigenicity; and T-lymphocyte proliferation inhibition potential. This study shows the relevance of standardizing the manufacturing process and quality controls to reduce variability due to the heterogeneity between donors. The results might also be useful for the implementation and optimization of new analytical techniques and automated methods to improve safety, which are the major concerns related to MSC-based therapy.


Asunto(s)
Bioensayo , Células Madre Mesenquimatosas , Humanos , Reproducibilidad de los Resultados , Pruebas de Carcinogenicidad , Endotoxinas , Control de Calidad
5.
Horm Metab Res ; 55(8): 536-545, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37192655

RESUMEN

To evaluate safety and therapeutic effect along 12 months of allogenic adipose tissue-derived stromal/stem cells (ASCs) transplantation with cholecalciferol (VITD) in patients with recent-onset type 1 diabetes (T1D). Prospective, phase II, open trial, pilot study in which patients with recent onset T1D received ASCs (1xKgx106 cells) and VITD 2000UI/day for 12 months (group 1) and were compared to controls with standard insulin therapy (group 2). Adverse events, C-peptide area under the curve (CPAUC), insulin dose, HbA1c and frequency of FoxP3+ in CD4+ or CD8+ T-cells(flow cytometry) were evaluated at baseline(T0), after 3(T3), 6(T6) and 12 months(T12). Eleven patients completed follow up (7:group 1;4:group 2). Group 1 had lower insulin requirement at T3(0.24±0.18vs0.53±0.23UI/kg,p=0.04), T6(0.24±0.15vs0.66±0.33 UI/kg,p=0.04) and T12(0.39±0.15vs0.74±0.29 UI/Kg,p=0.04).HbA1c was lower at T6 (50.57±8.56vs72.25±10.34 mmol/mol,p=0.01), without differences at T12 (57.14±11.98 in group 1 vs. 73.5±14.57 mmol/min in group 2, p=0.16). CPAUC was not significantly different between groups at T0(p=0.07), higher in group 1 at T3(p=0.04) and T6(p=0.006), but similar at T12(p=0.23). IDAA1c was significantly lower in group 1 than group 2 at T3,T6 and T12 (p=0.006, 0.006 and 0.042, respectively). IDDA1c was inversely correlated to FoxP3 expression in CD4 and CD8+ T cells at T6 (p<0.001 and p=0.01, respectively). In group 1, one patient had recurrence of a benign teratoma that was surgically removed, not associated to the intervention. ASCs with VITD without immunosuppression were safe and associated lower insulin requirements, better glycemic control, and transient better pancreatic function in recent onset T1D, but the potential benefits were not sustained.


Asunto(s)
Diabetes Mellitus Tipo 1 , Humanos , Diabetes Mellitus Tipo 1/terapia , Colecalciferol/uso terapéutico , Hemoglobina Glucada , Proyectos Piloto , Estudios Prospectivos , Estudios de Seguimiento , Insulina/metabolismo , Tejido Adiposo/metabolismo , Suplementos Dietéticos , Células Madre/metabolismo , Factores de Transcripción Forkhead
6.
Biomedicines ; 11(5)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37239065

RESUMEN

Traumatic spinal cord injury (SCI) is a devastating condition without an effective therapy. Cellular therapies are among the promising treatment strategies. Adult stem cells, such as mesenchymal stem cells, are often used clinical research for their immunomodulatory and regenerative potential. This study aimed to evaluate the effect of human adipose tissue-derived stem cells (ADSC) infusion through the cauda equina in rats with SCI. The human ADSC from bariatric surgery was isolated, expanded, and characterized. Wistar rats were subjected to blunt SCI and were divided into four groups. Two experimental groups (EG): EG1 received one ADSC infusion after SCI, and EG2 received two infusions, the first one after SCI and the second infusion seven days after the injury. Control groups (CG1 and CG2) received infusion with a culture medium. In vivo, cell tracking was performed 48 h and seven days after ADSC infusion. The animals were followed up for 40 days after SCI, and immunohistochemical quantification of myelin, neurons, and astrocytes was performed. Cellular tracking showed cell migration towards the injury site. ADSC infusion significantly reduced neuronal loss, although it did not prevent the myelin loss or enhance the area occupied by astrocytes compared to the control group. The results were similar when comparing one or two cell infusions. The injection of ADSC distal to the injured area was shown to be a safe and effective method for cellular administration in spinal cord injury.

7.
J Appl Oral Sci ; 31: e20220489, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37075387

RESUMEN

OBJECTIVE: This study aimed to evaluate neuronal markers in stromal cells from human exfoliated deciduous teeth (SHED) and standardize the isolation and characterization of those cells. METHODOLOGY: Healthy primary teeth were collected from children. The cells were isolated by enzymatic digestion with collagenase. By following the International Society for Cell and Gene Therapy (ISCT) guidelines, SHED were characterized by flow cytometry and differentiated into osteogenic, adipogenic, and chondrogenic lineages. Colony-forming unit-fibroblasts (CFU-F) were performed to assess these cells' potential and efficiency. To clarify the neuronal potential of SHED, the expression of nestin and ßIII-tubulin were examined by immunofluorescence and SOX1, SOX2, GFAP, and doublecortin (DCX), nestin, CD56, and CD146 by flow cytometry. RESULTS: SHED showed mesenchymal stromal cells characteristics, such as adhesion to plastic, positive immunophenotypic profile for CD29, CD44, CD73, CD90, CD105, and CD166 markers, reduced expression for CD14, CD19, CD34, CD45, HLA-DR, and differentiation in three lineages confirmed by staining and gene expression for adipogenic differentiation. The average efficiency of colony formation was 16.69%. SHED expressed the neuronal markers nestin and ßIII-tubulin; the fluorescent signal intensity was significantly higher in ßIII-tubulin (p<0.0001) compared to nestin. Moreover, SHED expressed DCX, GFAP, nestin, SOX1, SOX2, CD56, CD146, and CD271. Therefore, SHED had a potential for neuronal lineage even without induction with culture medium and specific factors. CONCLUSION: SHEDs may be a new therapeutic strategy for regenerating and repairing neuronal cells and tissues.


Asunto(s)
Células Madre Mesenquimatosas , Tubulina (Proteína) , Niño , Humanos , Nestina/metabolismo , Tubulina (Proteína)/metabolismo , Antígeno CD146/metabolismo , Diferenciación Celular/fisiología , Células Madre Mesenquimatosas/metabolismo , Diente Primario , Células Cultivadas , Células del Estroma
8.
Arq Bras Cardiol ; 120(1): e20220892, 2023 01 23.
Artículo en Inglés, Portugués | MEDLINE | ID: mdl-36700596
9.
J. appl. oral sci ; 31: e20220489, 2023. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1430629

RESUMEN

Abstract Objective: This study aimed to evaluate neuronal markers in stromal cells from human exfoliated deciduous teeth (SHED) and standardize the isolation and characterization of those cells. Methodology: Healthy primary teeth were collected from children. The cells were isolated by enzymatic digestion with collagenase. By following the International Society for Cell and Gene Therapy (ISCT) guidelines, SHED were characterized by flow cytometry and differentiated into osteogenic, adipogenic, and chondrogenic lineages. Colony-forming unit-fibroblasts (CFU-F) were performed to assess these cells' potential and efficiency. To clarify the neuronal potential of SHED, the expression of nestin and βIII-tubulin were examined by immunofluorescence and SOX1, SOX2, GFAP, and doublecortin (DCX), nestin, CD56, and CD146 by flow cytometry. Results: SHED showed mesenchymal stromal cells characteristics, such as adhesion to plastic, positive immunophenotypic profile for CD29, CD44, CD73, CD90, CD105, and CD166 markers, reduced expression for CD14, CD19, CD34, CD45, HLA-DR, and differentiation in three lineages confirmed by staining and gene expression for adipogenic differentiation. The average efficiency of colony formation was 16.69%. SHED expressed the neuronal markers nestin and βIII-tubulin; the fluorescent signal intensity was significantly higher in βIII-tubulin (p<0.0001) compared to nestin. Moreover, SHED expressed DCX, GFAP, nestin, SOX1, SOX2, CD56, CD146, and CD271. Therefore, SHED had a potential for neuronal lineage even without induction with culture medium and specific factors. Conclusion: SHEDs may be a new therapeutic strategy for regenerating and repairing neuronal cells and tissues.

10.
Arq. bras. cardiol ; 120(1): e20220892, 2023. tab, graf
Artículo en Portugués | LILACS, CONASS, Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1420149

Asunto(s)
Corazón Auxiliar
11.
Cells ; 11(8)2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35456019

RESUMEN

Mesenchymal stromal cells (MSCs) have been used in immunosuppressive therapy due to their therapeutic effects, with the HLA-G molecule seeming to play a fundamental role. This work evaluated alternative MSC sources to bone marrow (BM), namely, umbilical cord tissue (UC), adipose tissue (AD) and dental pulp tissue (DP), and the influence of interferon-γ (IFN-γ) and hypoxia on the cultivation of these cells for use in immunosuppression therapies. Expression of costimulatory markers CD40, CD80 and CD86 and immunosuppressive molecules CD152 and HLA-G was analyzed. Lymphocyte inhibition assays were also performed. Sequencing of the HLA-G gene from exons 1 to 5 was performed using next-generation sequencing to determine the presence of alleles. UC-derived MSCs (UCMSCs) expressed higher CD152 and HLA-G1 under standard cultivation. UCMSCs and DP-derived MSCs (DPSCs) secreted similar levels of HLA-G5. All MSC sources inhibited the proliferation of peripheral blood mononuclear cells (PBMCs); growth under regular versus hypoxic conditions resulted in similar levels of inhibition. When IFN-γ was added, PBMC growth was inhibited to a lesser extent by UCMSCs. The HLA-G*01:04:01:01 allele appears to generate a more efficient MSC response in inhibiting lymphocyte proliferation. However, the strength of this conclusion was limited by the small sample size. UCMSCs are an excellent alternative to BM in immunosuppressive therapy: they express high concentrations of inhibitory molecules and can be cultivated without stimuli, which minimizes cost.


Asunto(s)
Antígenos HLA-G , Células Madre Mesenquimatosas , Proliferación Celular , Células Cultivadas , Antígenos HLA-G/genética , Antígenos HLA-G/metabolismo , Terapia de Inmunosupresión , Interferón gamma/metabolismo , Interferón gamma/farmacología , Leucocitos Mononucleares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Cordón Umbilical/metabolismo
12.
Stem Cell Res Ther ; 13(1): 122, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35313959

RESUMEN

BACKGROUND: COVID-19 is a multisystem disease that presents acute and persistent symptoms, the postacute sequelae (PASC). Long-term symptoms may be due to consequences from organ or tissue injury caused by SARS-CoV-2, associated clotting or inflammatory processes during acute COVID-19. Various strategies are being chosen by clinicians to prevent severe cases of COVID-19; however, a single treatment would not be efficient in treating such a complex disease. Mesenchymal stromal cells (MSCs) are known for their immunomodulatory properties and regeneration ability; therefore, they are a promising tool for treating disorders involving immune dysregulation and extensive tissue damage, as is the case with COVID-19. This study aimed to assess the safety and explore the long-term efficacy of three intravenous doses of UC-MSCs (umbilical cord MSCs) as an adjunctive therapy in the recovery and postacute sequelae reduction caused by COVID-19. To our knowledge, this is one of the few reports that presents the longest follow-up after MSC treatment in COVID-19 patients. METHODS: This was a phase I/II, prospective, single-center, randomized, double-blind, placebo-controlled clinical trial. Seventeen patients diagnosed with COVID-19 who require intensive care surveillance and invasive mechanical ventilation-critically ill patients-were included. The patient infusion was three doses of 5 × 105 cells/kg UC-MSCs, with a dosing interval of 48 h (n = 11) or placebo (n = 6). The evaluations consisted of a clinical assessment, viral load, laboratory testing, including blood count, serologic, biochemical, cell subpopulation, cytokines and CT scan. RESULTS: The results revealed that in the UC-MSC group, there was a reduction in the levels of ferritin, IL-6 and MCP1-CCL2 on the fourteen day. In the second month, a decrease in the levels of reactive C-protein, D-dimer and neutrophils and an increase in the numbers of TCD3, TCD4 and NK lymphocytes were observed. A decrease in extension of lung damage was observed at the fourth month. The improvement in all these parameters was maintained until the end of patient follow-up. CONCLUSIONS: UC-MSCs infusion is safe and can play an important role as an adjunctive therapy, both in the early stages, preventing severe complications and in the chronic phase with postacute sequelae reduction in critically ill COVID-19 patients. Trial registration Brazilian Registry of Clinical Trials (ReBEC), UTN code-U1111-1254-9819. Registered 31 October 2020-Retrospectively registered, https://ensaiosclinicos.gov.br/rg/RBR-3fz9yr.


Asunto(s)
COVID-19 , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Humanos , Trasplante de Células Madre Mesenquimatosas/métodos , Estudios Prospectivos , SARS-CoV-2
13.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35269664

RESUMEN

Chronic kidney disease (CKD) is characterized by structural abnormalities and the progressive loss of kidney function. Extracellular vesicles (EVs) from human umbilical cord tissue (hUCT)-derived mesenchymal stem cells (MSCs) and expanded human umbilical cord blood (hUCB)-derived CD133+ cells (eCD133+) maintain the characteristics of the parent cells, providing a new form of cell-free treatment. We evaluated the effects of EVs from hUCT-derived MSCs and hUCB-derived CD133+ cells on rats with CDK induced by an adenine-enriched diet. EVs were isolated by ultracentrifugation and characterized by nanoparticle tracking analysis (NTA) and electron microscopy. The animals were randomized and divided into the MSC-EV group, eEPC-EV group and control group. Infusions occurred on the seventh and 14th days after CKD induction. Evaluations of kidney function were carried out by biochemical and histological analyses. Intense labeling of the α-SMA protein was observed when comparing the control with MSC-EVs. In both groups treated with EVs, a significant increase in serum albumin was observed, and the increase in cystatin C was inhibited. The results indicated improvements in renal function in CKD, demonstrating the therapeutic potential of EVs derived from MSCs and eCD133+ cells and suggesting the possibility that in the future, more than one type of EV will be used concurrently.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Insuficiencia Renal Crónica , Animales , Células Cultivadas , Vesículas Extracelulares/metabolismo , Sangre Fetal , Células Madre Mesenquimatosas/metabolismo , Ratas , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/terapia
14.
Braz. arch. biol. technol ; 65: e22200620, 2022. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1364468

RESUMEN

Abstract: Asthma is a chronic respiratory disease affecting 300 million people worldwide. It results in several structural changes in the airways, which are minimally accessible in clinical practice. Cell therapy using mesenchymal stromal cells (MSCs) is a promising strategy for treating asthma due to the paracrine activity of MSCs, which influences tissue regeneration and modulates the immune response. Studies using extracellular vesicles (EV) released by MSCs have demonstrated their regenerative properties in animal models. The aim of this study was to evaluate the potential of EVs isolated from human bone marrow MSCs (hBM-MSCs) to control lung tissue remodeling in ovalbumin-induced allergic asthma in Balb/c mice. We isolated hBM-MSCs from a single donor, expanded and characterized them, and then isolated EVs. Asthma was induced in 43 male Balb/c mice, divided into four groups: control, asthmatic (AS), asthmatic plus systemic EVs (EV-S), and asthmatic plus intratracheal EVs (EV-IT). Upon completion of asthma induction, animals were treated with EVs either locally (EV-IT) or intravenously (EV-S). Seven days after, we performed bronchoalveolar lavage (BAL) and the total nuclear cells were counted. The animals were euthanized, and the lungs were collected for histopathological analysis of the airways. The EV-S group showed improvement in only the total BAL cell count compared with the AS group, while the EV-IT group showed significant improvement in almost all evaluated criteria. Therefore, we demonstrate that the local application of EVs derived from hBM-MSCs may be a potential treatment in controlling asthma.

15.
Genet Mol Biol ; 44(3): e20200147, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34496008

RESUMEN

Induced pluripotent stem cells (iPSCs) are generated from adult cells that have been reprogrammed to pluripotency. However, in vitro cultivation and genetic reprogramming increase genetic instability, which could result in chromosomal abnormalities. Maintenance of genetic stability after reprogramming is required for possible experimental and clinical applications. The aim of this study was to analyze chromosomal alterations by using the G-banding karyotyping method applied to 97 samples from 38 iPSC cell lines generated from peripheral blood or Wharton's jelly. Samples from patients with long QT syndrome, Jervell and Lange-Nielsen syndrome and amyotrophic lateral sclerosis and from normal individuals revealed the following chromosomal alterations: acentric fragments, chromosomal fusions, premature centromere divisions, double minutes, radial figures, ring chromosomes, polyploidies, inversions and trisomies. An analysis of two samples generated from Wharton's jelly before and after reprogramming showed that abnormal clones can emerge or be selected and generate an altered lineage. IPSC lines may show clonal and nonclonal chromosomal aberrations in several passages (from P6 to P34), but these aberrations are more common in later passages. Many important chromosomal aberrations were detected, showing that G-banding is very useful for evaluating genetic instability with important repercussions for the application of iPSC lines.

16.
Res Vet Sci ; 140: 117-124, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34425413

RESUMEN

The use of regenerative medicine for pets has been growing in recent years, and an increasing number of studies have contributed to the widespread use of cell therapies in clinical veterinary medicine. Mesenchymal stem cells (MSCs) can be isolated from different sources such as dental pulp and umbilical cord. Aiming safety and reproducibility of cell therapy in clinical practice by using sources easily obtained that are usually discarded, this study isolated, characterized, and evaluated the proliferation and colony formation potential of canine dental pulp-derived mesenchymal stem cells (cDPSCs) and canine umbilical cord tissue (cUCSCs). Three samples from each source were collected, isolated, and cultured. MSCs were differentiated into three lineages and quantified by spectrophotometry. For immunophenotypic characterization, antibodies were used to analyze the expression of cell surface markers, and 7-AAD and Annexin-V were used to analyze cell viability and apoptosis, respectively. For the clonogenic assay, cells were cultured, the colonies were stained, and counted. For the proliferation assay, the cells were plated in flasks for three days and added EdU nucleoside. cDPSCs and cUCSCs showed plastic adherence and fibroblastic morphology after cultivation. Both sources showed differentiation potential and showed CD29 and CD44 positivity and CD14, CD45, CD34 and HLA-DR negativity, and low mortality and apoptosis rates. There was no difference in proliferation rates between sources. Overall, although cUCSCs had a higher number of colony-forming units than cDPSCs, both sources presented MSCs characteristics and can be used safely as alternative sources in cell therapy.


Asunto(s)
Células Madre Mesenquimatosas , Animales , Diferenciación Celular , Proliferación Celular , Tratamiento Basado en Trasplante de Células y Tejidos/veterinaria , Células Cultivadas , Pulpa Dental , Perros , Reproducibilidad de los Resultados , Cordón Umbilical
17.
Cancers (Basel) ; 13(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071283

RESUMEN

Chromosomal instability (CIN), the increasing rate in which cells acquire new chromosomal alterations, is one of the hallmarks of cancer. Many studies highlighted CIN as an important mechanism in the origin, progression, and relapse of acute myeloid leukemia (AML). The ambivalent feature of CIN as a cancer-promoting or cancer-suppressing mechanism might explain the prognostic variability. The latter, however, is described in very few studies. This review highlights the important CIN mechanisms in AML, showing that CIN signatures can occur largely in all the three major AML types (de novo AML, secondary-AML, and therapy-related-AML). CIN features in AML could also be age-related and reflect the heterogeneity of the disease. Although most of these abnormalities show an adverse prognostic value, they also offer a strong new perspective on personalized therapy approaches, which goes beyond assessing CIN in vitro in patient tumor samples to predict prognosis. Current and emerging AML therapies are exploring CIN to improve AML treatment, which includes blocking CIN or increasing CIN beyond the limit threshold to induce cell death. We argue that the characterization of CIN features, not included yet in the routine diagnostic of AML patients, might provide a better stratification of patients and be extended to a more personalized therapeutic approach.

18.
Arch. endocrinol. metab. (Online) ; 65(3): 342-351, May-June 2021. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1285166

RESUMEN

ABSTRACT Objective: Adipose tissue-derived stromal/stem cells (ASCs) and vitamin D have immunomodulatory actions that could be useful for type 1 diabetes (T1D). We aimed in this study to investigate the safety and efficacy of ASCs + daily cholecalciferol (VIT D) for 6 months in patients with recent-onset T1D. Materials and methods: In this prospective, dual-center, open trial, patients with recent onset T1D received one dose of allogenic ASC (1 x 106 cells/kg) and cholecalciferol 2,000 UI/day for 6 months (group 1). They were compared to patients who received chol-ecalciferol (group 2) and standard treatment (group 3). Adverse events were recorded; C-peptide (CP), insulin dose and HbA1c were measured at baseline (T0), after 3 (T3) and 6 months (T6). Results: In group 1 (n = 7), adverse events included transient headache (all), mild local reactions (all), tachycardia (n = 4), abdominal cramps (n = 1), thrombophlebitis (n = 4), scotomas (n = 2), and central retinal vein occlusion at T3 (n = 1, resolution at T6). Group 1 had an increase in basal CP (p = 0.018; mean: 40.41+/-40.79 %), without changes in stimulated CP after mixed meal (p = 0.62), from T0 to T6. Basal CP remained stable in groups 2 and 3 (p = 0.58 and p = 0.116, respectively). Group 1 had small insulin requirements (0.31+/- 0.26 UI/kg) without changes at T6 (p = 0.44) and HbA1c decline (p = 0.01). At T6, all patients (100%; n = 7) in group 1 were in honeymoon vs 75% (n = 3/4) and 50% (n = 3/6) in groups 2 and 3, p = 0.01. Conclusions: Allogenic ASC + VIT D without immunosuppression was safe and might have a role in the preservation of β-cells in patients with recent-onset T1D. ClinicalTrials.gov: NCT03920397.


Asunto(s)
Humanos , Células Madre/citología , Colecalciferol/uso terapéutico , Trasplante de Células Madre Mesenquimatosas , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Proyectos Piloto , Tejido Adiposo/citología , Estudios Prospectivos
19.
Arch Endocrinol Metab ; 65(3): 342-351, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33939911

RESUMEN

OBJECTIVE: Adipose tissue-derived stromal/stem cells (ASCs) and vitamin D have immunomodulatory actions that could be useful for type 1 diabetes (T1D). We aimed in this study to investigate the safety and efficacy of ASCs + daily cholecalciferol (VIT D) for 6 months in patients with recent-onset T1D. METHODS: In this prospective, dual-center, open trial, patients with recent onset T1D received one dose of allogenic ASC (1 × 106 cells/kg) and cholecalciferol 2,000 UI/day for 6 months (group 1). They were compared to patients who received chol-ecalciferol (group 2) and standard treatment (group 3). Adverse events were recorded; C-peptide (CP), insulin dose and HbA1c were measured at baseline (T0), after 3 (T3) and 6 months (T6). RESULTS: In group 1 (n = 7), adverse events included transient headache (all), mild local reactions (all), tachycardia (n = 4), abdominal cramps (n = 1), thrombophlebitis (n = 4), scotomas (n = 2), and central retinal vein occlusion at T3 (n = 1, resolution at T6). Group 1 had an increase in basal CP (p = 0.018; mean: 40.41+/-40.79 %), without changes in stimulated CP after mixed meal (p = 0.62), from T0 to T6. Basal CP remained stable in groups 2 and 3 (p = 0.58 and p = 0.116, respectively). Group 1 had small insulin requirements (0.31+/- 0.26 UI/kg) without changes at T6 (p = 0.44) and HbA1c decline (p = 0.01). At T6, all patients (100%; n = 7) in group 1 were in honeymoon vs 75% (n = 3/4) and 50% (n = 3/6) in groups 2 and 3, p = 0.01. CONCLUSION: Allogenic ASC + VIT D without immunosuppression was safe and might have a role in the preservation of ß-cells in patients with recent-onset T1D. ClinicalTrials.gov: NCT03920397.


Asunto(s)
Colecalciferol/uso terapéutico , Diabetes Mellitus Tipo 1 , Trasplante de Células Madre Mesenquimatosas , Células Madre/citología , Tejido Adiposo/citología , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Humanos , Proyectos Piloto , Estudios Prospectivos
20.
J Clin Exp Dent ; 13(1): e8-e13, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33425225

RESUMEN

BACKGROUND: Stem cells associated with growth factors have been shown to improve bone healing and the osseointegration of dental implants. A Brazilian miniature pig model was used to evaluate the effect of autologous bone marrow-derived mesenchymal stem cells (BM-MSCs) associated with platelet-rich plasma (PRP) on the osseointegration of immediately placed dental implants. MATERIAL AND METHODS: A total of four male adult miniature pigs were used in this study. BM-MSCs from each pig were isolated from the iliac crest and expanded in vitro. The undifferentiated BM-MSCs were mixed with autologous PRP and implanted in the post-extraction sockets at the experimental sites before implant placement (10 x 106 cells/ socket). The control sites did not receive either BM-MSC or PRP. Each animal received four implants in the control side and 04 on the experimental side, totalizing 32 implants. The specimens were analyzed radiographically and histomorphometrically to determine the implant loss rate (ILR), the bone-implant contact (BIC), and bone density within the threads (BDWT). RESULTS: The ILR, the BIC, and the BDWT for the control and experimental sites were respectively 25.0% and 18.7% (p=0.686); 39.0% and 27.7% (p=0.110); 46.8% and 36.5% (p=0.247). CONCLUSIONS: The use of BM-MSCs + PRP in conjunction with immediately placed implants showed a lower ILR but there was no significant effect on the osseointegration of the dental implants. More preclinical studies, in large animal models, are needed to establish whether BM-MSCs associated with PRP could be used for the enhancement of the osseointegration of dental implants. Key words:Osseointegration, bone marrow-derived mesenchymal stem cells, platelet-rich plasma, dental implants, minipigs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...