Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
BMC Res Notes ; 17(1): 143, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773625

RESUMEN

OBJECTIVES: The G72 mouse model of schizophrenia represents a well-known model that was generated to meet the main translational criteria of isomorphism, homology and predictability of schizophrenia to a maximum extent. In order to get a more detailed view of the complex etiopathogenesis of schizophrenia, whole genome transcriptome studies turn out to be indispensable. Here we carried out microarray data collection based on RNA extracted from the retrosplenial cortex, hippocampus and thalamus of G72 transgenic and wild-type control mice. Experimental animals were age-matched and importantly, both sexes were considered separately. DATA DESCRIPTION: The isolated RNA from all three brain regions was purified, quantified und quality controlled before initiation of the hybridization procedure with SurePrint G3 Mouse Gene Expression v2 8  ×  60 K microarrays. Following immunofluorescent measurement und preprocessing of image data, raw transcriptome data from G72 mice and control animals were extracted and uploaded in a public database. Our data allow insight into significant alterations in gene transcript levels in G72 mice and enable the reader/user to perform further complex analyses to identify potential age-, sex- and brain-region-specific alterations in transcription profiles and related pathways. The latter could facilitate biomarker identification and drug research and development in schizophrenia research.


Asunto(s)
Corteza Cerebral , Modelos Animales de Enfermedad , Hipocampo , Esquizofrenia , Tálamo , Transcriptoma , Animales , Esquizofrenia/genética , Esquizofrenia/metabolismo , Hipocampo/metabolismo , Masculino , Femenino , Ratones , Transcriptoma/genética , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Tálamo/metabolismo , Ratones Transgénicos , Perfilación de la Expresión Génica/métodos , Factores Sexuales
2.
PLoS One ; 19(2): e0296959, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38324617

RESUMEN

A variety of Alzheimer's disease (AD) mouse models has been established and characterized within the last decades. To get an integrative view of the sophisticated etiopathogenesis of AD, whole genome transcriptome studies turned out to be indispensable. Here we carried out microarray data collection based on RNA extracted from the retrosplenial cortex and hippocampus of age-matched, eight months old male and female APP/PS1 AD mice and control animals to perform sex- and brain region specific analysis of transcriptome profiles. The results of our studies reveal novel, detailed insight into differentially expressed signature genes and related fold changes in the individual APP/PS1 subgroups. Gene ontology and Venn analysis unmasked that intersectional, upregulated genes were predominantly involved in, e.g., activation of microglial, astrocytic and neutrophilic cells, innate immune response/immune effector response, neuroinflammation, phagosome/proteasome activation, and synaptic transmission. The number of (intersectional) downregulated genes was substantially less in the different subgroups and related GO categories included, e.g., the synaptic vesicle docking/fusion machinery, synaptic transmission, rRNA processing, ubiquitination, proteasome degradation, histone modification and cellular senescence. Importantly, this is the first study to systematically unravel sex- and brain region-specific transcriptome fingerprints/signature genes in APP/PS1 mice. The latter will be of central relevance in future preclinical and clinical AD related studies, biomarker characterization and personalized medicinal approaches.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Masculino , Femenino , Animales , Enfermedad de Alzheimer/patología , Transcriptoma , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Ratones Transgénicos , Hipocampo/metabolismo , Modelos Animales de Enfermedad , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Péptidos beta-Amiloides/metabolismo
3.
Artículo en Alemán | MEDLINE | ID: mdl-38214724

RESUMEN

The analysis of real-world data (RWD) has become increasingly important in health research in recent years. With the BfArM Health Data Lab (HDL), which is currently being set up, researchers will in future be able to gain access to routine data from the statutory health insurance of around 74 million people in Germany. Data from electronic patient records can also be made available for research prospectively. In doing so, the Health Data Lab guarantees the highest data protection and IT security standards. The digital application process, the provision of data in secure processing environments as well as the features supporting the analyses such as catalogues of coding systems, a point-and-click analysis tool and predefined standard analyses increase user-friendliness for researchers. The use of the extensive health data accessible at HDL will open a wide range of future possibilities for improving the health system and the quality of care. This article begins by highlighting the advantages of the HDL and outlining the opportunities that the RWD offers for research in healthcare and for the population. The structure and central aspects of the HDL are explained afterwards. An outlook on the opportunities of linking different data is given. What the application and data usage processes at the HDL will look like is illustrated using the example of fictitious possibilities for analysing long COVID based on the routine data available at the HDL in the future.


Asunto(s)
Atención a la Salud , Síndrome Post Agudo de COVID-19 , Humanos , Alemania , Registros Electrónicos de Salud
4.
World Psychiatry ; 23(1): 113-123, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38214637

RESUMEN

Anxiety disorders are very prevalent and often persistent mental disorders, with a considerable rate of treatment resistance which requires regulatory clinical trials of innovative therapeutic interventions. However, an explicit definition of treatment-resistant anxiety disorders (TR-AD) informing such trials is currently lacking. We used a Delphi method-based consensus approach to provide internationally agreed, consistent and clinically useful operational criteria for TR-AD in adults. Following a summary of the current state of knowledge based on international guidelines and an available systematic review, a survey of free-text responses to a 29-item questionnaire on relevant aspects of TR-AD, and an online consensus meeting, a panel of 36 multidisciplinary international experts and stakeholders voted anonymously on written statements in three survey rounds. Consensus was defined as ≥75% of the panel agreeing with a statement. The panel agreed on a set of 14 recommendations for the definition of TR-AD, providing detailed operational criteria for resistance to pharmacological and/or psychotherapeutic treatment, as well as a potential staging model. The panel also evaluated further aspects regarding epidemiological subgroups, comorbidities and biographical factors, the terminology of TR-AD vs. "difficult-to-treat" anxiety disorders, preferences and attitudes of persons with these disorders, and future research directions. This Delphi method-based consensus on operational criteria for TR-AD is expected to serve as a systematic, consistent and practical clinical guideline to aid in designing future mechanistic studies and facilitate clinical trials for regulatory purposes. This effort could ultimately lead to the development of more effective evidence-based stepped-care treatment algorithms for patients with anxiety disorders.

5.
Data Brief ; 50: 109594, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37767130

RESUMEN

A variety of Alzheimer disease (AD) mouse models has been established and characterized within the last decades. These models are generated to meet the principal criteria of AD isomorphism, homology and predictability to a maximum extent. To get an integrative view of the sophisticated etiopathogenesis of AD, whole genome transcriptome data analysis turns out to be indispensable. Here, we present a microarray-based transcriptome data collection based on RNA extracted from the retrosplenial (RS) cortex and the hippocampus of APP/PS1 AD mice and control animals. Experimental animals were age matched and importantly, both sexes were considered separately. Isolated RNA was purified, quantified und quality controlled prior to the hybridization procedure with SurePrint G3 Mouse Gene Expression v2 8 × 60K microarrays. Following immunofluorescent measurement und preprocessing/extraction of image data, raw transcriptome data were uploaded including differentially expressed gene candidates and related fold changes in APP/PS1 AD mice and controls. Our data allow further insight into alterations in gene transcript levels in APP/PS1 AD mice compared to controls and enable the reader/user to carry out complex transcriptome analysis to characterize potential age-, sex- and brain-region-specific alterations in e.g., neuroinflammatory, immunological, neurodegenerative and ion channel pathways.

6.
Int J Mol Sci ; 23(7)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35408817

RESUMEN

Voltage-gated Ca2+ channels (VGCCs) were reported to play a crucial role in neurotransmitter release, dendritic resonance phenomena and integration, and the regulation of gene expression. In the septohippocampal system, high- and low-voltage-activated (HVA, LVA) Ca2+ channels were shown to be involved in theta genesis, learning, and memory processes. In particular, HVA Cav2.3 R-type and LVA Cav3 T-type Ca2+ channels are expressed in the medial septum-diagonal band of Broca (MS-DBB), hippocampal interneurons, and pyramidal cells, and ablation of both channels was proven to severely modulate theta activity. Importantly, Cav3 Ca2+ channels contribute to rebound burst firing in septal interneurons. Consequently, functional impairment of T-type Ca2+ channels, e.g., in null mutant mouse models, caused tonic disinhibition of the septohippocampal pathway and subsequent enhancement of hippocampal theta activity. In addition, impairment of GABA A/B receptor transcription, trafficking, and membrane translocation was observed within the septohippocampal system. Given the recent findings that amyloid precursor protein (APP) forms complexes with GABA B receptors (GBRs), it is hypothesized that T-type Ca2+ current reduction, decrease in GABA receptors, and APP destabilization generate complex functional interdependence that can constitute a sophisticated proamyloidogenic environment, which could be of potential relevance in the etiopathogenesis of Alzheimer's disease (AD). The age-related downregulation of T-type Ca2+ channels in humans goes together with increased Aß levels that could further inhibit T-type channels and aggravate the proamyloidogenic environment. The mechanistic model presented here sheds new light on recent reports about the potential risks of T-type Ca2+ channel blockers (CCBs) in dementia, as observed upon antiepileptic drug application in the elderly.


Asunto(s)
Farmacovigilancia , Células Piramidales , Animales , Hipocampo/fisiología , Interneuronas , Ratones , Ratones Noqueados , Células Piramidales/fisiología , Transmisión Sináptica/fisiología
10.
Artículo en Alemán | MEDLINE | ID: mdl-34524476

RESUMEN

Digitalization is a clear megatrend of our time, also in the health sector, which is currently experiencing enormous acceleration due to the COVID-19 pandemic in addition to paving the way due to changes in the legal framework. Looking to the future, this trend will contribute to further digitalization and the merging of individual digital products, including medicinal products and medical devices, into a digital ecosystem. This will be supported by ever-shorter development cycles and technological progress. Digitization will not only strengthen patient sovereignty, but also enable more patient-centered medicine; artificial intelligence will improve and accelerate diagnoses and will contribute to a better understanding of disease patterns and underlying mechanisms or causes.In order to continue to enable innovations in the future, to focus on emerging trends, and, above all, to further improve patient safety, the BfArM is contributing in many places to transforming the opportunities associated with digitalization into possibilities - without losing sight of the risks. The following is an overview of how, for example, the expansion of the Research Data Center, activities addressing interoperability, research projects using artificial intelligence, (inter-)national cooperation, the utilization and inclusion of "Real World Data" in our benefit/risk assessments, and the evaluation of digital health and digital care applications among other activities of the BfArM contribute to "digital readiness" in Germany and Europe.


Asunto(s)
Inteligencia Artificial , COVID-19 , Atención a la Salud , Ecosistema , Alemania , Humanos , Pandemias , SARS-CoV-2
11.
Curr Alzheimer Res ; 18(6): 453-469, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34587884

RESUMEN

Early pharmacoepidemiological studies suggested that Proton Pump Inhibitors (PPIs) might increase the risk of Alzheimer's Disease (AD) and non-AD related dementias. These findings were supported by preclinical studies, specifically stressing the proamyloidogenic and indirect anticholinergic effects of PPIs. However, further large-scale pharmacoepidemiological studies showed inconsistent results on the association between PPIs and dementia. Pharmacodynamically, these findings might be related to the LXR/RXR-mediated amyloid clearance effect and anti-inflammatory action of PPIs. Further aspects that influence PPI effects on AD are related to patient- specific pharmacokinetic and pharmacogenomic characteristics. In conclusion, a personalized (individualized) medicinal approach is necessary to model and predict the potential harmful or beneficial effects of PPIs in AD and non-AD-related dementias in the future.


Asunto(s)
Amiloide/metabolismo , Demencia/tratamiento farmacológico , Farmacoepidemiología , Inhibidores de la Bomba de Protones , Humanos , Inhibidores de la Bomba de Protones/efectos adversos , Inhibidores de la Bomba de Protones/uso terapéutico
12.
Sci Rep ; 11(1): 13972, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34234221

RESUMEN

High voltage-activated Cav2.3 R-type Ca2+ channels and low voltage-activated Cav3.2 T-type Ca2+ channels were reported to be involved in numerous physiological and pathophysiological processes. Many of these findings are based on studies in Cav2.3 and Cav3.2 deficient mice. Recently, it has been proposed that inbreeding of Cav2.3 and Cav3.2 deficient mice exhibits significant deviation from Mendelian inheritance and might be an indication for potential prenatal lethality in these lines. In our study, we analyzed 926 offspring from Cav3.2 breedings and 1142 offspring from Cav2.3 breedings. Our results demonstrate that breeding of Cav2.3 deficient mice shows typical Mendelian inheritance and that there is no indication of prenatal lethality. In contrast, Cav3.2 breeding exhibits a complex inheritance pattern. It might be speculated that the differences in inheritance, particularly for Cav2.3 breeding, are related to other factors, such as genetic specificities of the mutant lines, compensatory mechanisms and altered sperm activity.


Asunto(s)
Canales de Calcio Tipo R/deficiencia , Canales de Calcio Tipo T/genética , Proteínas de Transporte de Catión/deficiencia , Genotipo , Endogamia , Patrón de Herencia , Herencia Multifactorial , Mutación , Animales , Femenino , Endogamia/métodos , Masculino , Ratones , Fenotipo
13.
Dtsch Arztebl Int ; 118(21): 357-362, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-34247699

RESUMEN

BACKGROUND: N-Nitrosodimethylamine (NDMA), classified as a probable human carcinogen, has been found as a contaminant in the antihypertensive drug valsartan. Potentially carcinogenic effects associated with the consumption of NDMAcontaminated valsartan have not yet been analyzed in large-scale cohort studies. We therefore carried out the study reported here to explore the association between NDMA-contaminated valsartan and the risk of cancer. METHODS: This cohort study was based on longitudinal routine data obtained from a large German statutory health insurance provider serving approximately 25 million insurees. The cohort comprised patients who had filled a prescription for valsartan in the period 2012-2017. The endpoint was an incident diagnosis of cancer. Hazard ratios (HR) for cancer in general and for certain specific types of cancer were calculated by means of Cox regression models with time-dependent variables and adjustment for potential confounders. RESULTS: A total of 780 871 persons who had filled a prescription for valsartan between 2012 and 2017 were included in the study. There was no association between exposure to NDMA-contaminated valsartan and the overall risk of cancer. A statistically significant association was found, however, between exposure to NDMA-contaminated valsartan and hepatic cancer (adjusted HR 1.16; 95% confidence interval [1.03; 1.31]). CONCLUSION: These findings suggest that the consumption of NDMA-contaminated valsartan is associated with a slightly increased risk of hepatic cancer; no association was found with the risk of cancer overall. Close observation of the potential long-term effects of NDMA-contaminated valsartan seems advisable.


Asunto(s)
Dimetilnitrosamina , Neoplasias , Estudios de Cohortes , Contaminación de Medicamentos , Humanos , Neoplasias/inducido químicamente , Neoplasias/epidemiología , Valsartán/efectos adversos
14.
Data Brief ; 36: 107027, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33948455

RESUMEN

This article provides raw relative electroencephalographic (EEG) power, temperature and activity data from controls and Cav3.2 deficient mice. Radiotransmitter implantation was carried out in male experimental mice under ketamine/xylazine narcosis. Following a recovery period, radiotelemetric EEG recordings from the hippocampal CA1 region were obtained under spontaneous 24 h long-term conditions and post urethane injection. Relative EEG power values (%) for 2 s epochs were analysed for the following frequency ranges: delta 1 ( δ 1 , 0.5-4 Hz), delta 2 ( δ 2 , 1-4 Hz), theta 1 ( θ 1 , 4-8 Hz), theta 2 ( θ 2 , 4-12 Hz), alpha ( α , 8-12 Hz), sigma ( σ , 12-16 Hz), beta 1 ( ß 1 , 12-30 Hz), beta 2 ( ß 2 , 16-24 Hz), beta 3 ( ß 3 , 16-30 Hz), gamma low ( γ l o w , 30-50 Hz), gamma mid ( γ m i d , 50-70 Hz), gamma high ( γ h i g h , 70-100 Hz), gamma ripples ( γ r i p p l e s , 80-200 Hz), and gamma fast ripples ( γ f a s t r i p p l e s , 200-500 Hz). In addition, subcutaneous temperature and relative activity data were analysed for both the light and dark cycle of two long-term recordings. The same type of data was obtained post urethane injection. Detailed information is provided for the age and body weight of the experimental animals, the technical specifications of the radiofrequency transmitter, the stereotaxic coordinates for the intracerebral, deep and epidural, surface EEG electrodes, the electrode features, the filtering and sampling characteristics, the analysed EEG frequency bands and the data acquisition parameters. EEG power data, temperature and activity data are available at MENDELEY DATA (doi:10.17632/x53km5sby6.1, URL: http://dx.doi.org/10.17632/x53km5sby6.1). Raw EEG data are available at zenodo (https://zenodo.org/).

15.
Neural Plast ; 2021: 8823383, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33519929

RESUMEN

Recent pharmacoepidemiologic studies suggest that pharmacological neuroenhancement (pNE) and mood enhancement are globally expanding phenomena with distinctly different regional characteristics. Sociocultural and regulatory aspects, as well as health policies, play a central role in addition to medical care and prescription practices. The users mainly display self-involved motivations related to cognitive enhancement, emotional stability, and adaptivity. Natural stimulants, as well as drugs, represent substance abuse groups. The latter comprise purines, methylxanthines, phenylethylamines, modafinil, nootropics, antidepressants but also benzodiazepines, ß-adrenoceptor antagonists, and cannabis. Predominant pharmacodynamic target structures of these substances are the noradrenergic/dopaminergic and cholinergic receptor/transporter systems. Further targets comprise adenosine, serotonin, and glutamate receptors. Meta-analyses of randomized-controlled studies in healthy individuals show no or very limited verifiability of positive effects of pNE on attention, vigilance, learning, and memory. Only some members of the substance abuse groups, i.e., phenylethylamines and modafinil, display positive effects on attention and vigilance that are comparable to caffeinated drinks. However, the development of new antidementia drugs will increase the availability and the potential abuse of pNE. Social education, restrictive regulatory measures, and consistent medical prescription practices are essential to restrict the phenomenon of neuroenhancement with its social, medical, and ethical implications. This review provides a comprehensive overview of the highly dynamic field of pharmacological neuroenhancement and elaborates the dramatic challenges for the medical, sociocultural, and ethical fundaments of society.


Asunto(s)
Afecto/efectos de los fármacos , Estimulantes del Sistema Nervioso Central/farmacología , Desarrollo de Medicamentos/tendencias , Motivación/efectos de los fármacos , Nootrópicos/farmacología , Farmacoepidemiología/tendencias , Afecto/fisiología , Estimulantes del Sistema Nervioso Central/síntesis química , Estimulantes del Sistema Nervioso Central/clasificación , Desarrollo de Medicamentos/métodos , Ética , Predicción , Humanos , Motivación/fisiología , Nootrópicos/síntesis química , Nootrópicos/clasificación , Farmacoepidemiología/métodos
16.
Sci Rep ; 11(1): 1099, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441788

RESUMEN

T-type Ca2+ channels are assumed to contribute to hippocampal theta oscillations. We used implantable video-EEG radiotelemetry and qPCR to unravel the role of Cav3.2 Ca2+ channels in hippocampal theta genesis. Frequency analysis of spontaneous long-term recordings in controls and Cav3.2-/- mice revealed robust increase in relative power in the theta (4-8 Hz) and theta-alpha (4-12 Hz) ranges, which was most prominent during the inactive stages of the dark cycles. Urethane injection experiments also showed enhanced type II theta activity and altered theta architecture following Cav3.2 ablation. Next, gene candidates from hippocampal transcriptome analysis of control and Cav3.2-/- mice were evaluated using qPCR. Dynein light chain Tctex-Type 1 (Dynlt1b) was significantly reduced in Cav3.2-/- mice. Furthermore, a significant reduction of GABA A receptor δ subunits and GABA B1 receptor subunits was observed in the septohippocampal GABAergic system. Our results demonstrate that ablation of Cav3.2 significantly alters type II theta activity and theta architecture. Transcriptional changes in synaptic transporter proteins and GABA receptors might be functionally linked to the electrophysiological phenotype.


Asunto(s)
Canales de Calcio Tipo T/metabolismo , Hipocampo/fisiología , Animales , Canales de Calcio Tipo T/genética , Femenino , Eliminación de Gen , Masculino , Ratones , Transcripción Genética
17.
Neuropharmacology ; 185: 108081, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32407924

RESUMEN

When Alzheimer's disease (AD) disease-modifying therapies will be available, global healthcare systems will be challenged by a large-scale demand for clinical and biological screening. Validation and qualification of globally accessible, minimally-invasive, and time-, cost-saving blood-based biomarkers need to be advanced. Novel pathophysiological mechanisms (and related candidate biomarkers) - including neuroinflammation pathways (TREM2 and YKL-40), axonal degeneration (neurofilament light chain protein), synaptic dysfunction (neurogranin, synaptotagmin, α-synuclein, and SNAP-25) - may be integrated into an expanding pathophysiological and biomarker matrix and, ultimately, integrated into a comprehensive blood-based liquid biopsy, aligned with the evolving ATN + classification system and the precision medicine paradigm. Liquid biopsy-based diagnostic and therapeutic algorithms are increasingly employed in Oncology disease-modifying therapies and medical practice, showing an enormous potential for AD and other brain diseases as well. For AD and other neurodegenerative diseases, newly identified aberrant molecular pathways have been identified as suitable therapeutic targets and are currently investigated by academia/industry-led R&D programs, including the nerve-growth factor pathway in basal forebrain cholinergic neurons, the sigma1 receptor, and the GTPases of the Rho family. Evidence for a clinical long-term effect on cognitive function and brain health span of cholinergic compounds, drug candidates for repositioning programs, and non-pharmacological multidomain interventions (nutrition, cognitive training, and physical activity) is developing as well. Ultimately, novel pharmacological paradigms, such as quantitative systems pharmacology-based integrative/explorative approaches, are gaining momentum to optimize drug discovery and accomplish effective pathway-based strategies for precision medicine. This article is part of the special issue on 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/tratamiento farmacológico , Descubrimiento de Drogas/tendencias , Líquido Intracelular/efectos de los fármacos , Farmacología Clínica/tendencias , Biología de Sistemas/tendencias , Enfermedad de Alzheimer/metabolismo , Animales , Antiinflamatorios/administración & dosificación , Antiinflamatorios/metabolismo , Descubrimiento de Drogas/métodos , Reposicionamiento de Medicamentos/métodos , Reposicionamiento de Medicamentos/tendencias , Predicción , Humanos , Líquido Intracelular/metabolismo , Biopsia Líquida/métodos , Biopsia Líquida/tendencias , Glicoproteínas de Membrana/metabolismo , Farmacología Clínica/métodos , Receptores Inmunológicos/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Biología de Sistemas/métodos
18.
Eur J Neurosci ; 51(7): 1583-1604, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31603587

RESUMEN

Voltage-gated Ca2+ channels (VGCCs) are considered to play a key role in auditory perception and information processing within the murine inner ear and brainstem. In the past, Cav 1.3 L-type VGCCs gathered most attention as their ablation causes congenital deafness. However, isolated patch-clamp investigation and localization studies repetitively suggested that Cav 2.3 R-type VGCCs are also expressed in the cochlea and further components of the ascending auditory tract, pointing to a potential functional role of Cav 2.3 in hearing physiology. Thus, we performed auditory profiling of Cav 2.3+/+ controls, heterozygous Cav 2.3+/- mice and Cav 2.3 null mutants (Cav 2.3-/- ) using brainstem-evoked response audiometry. Interestingly, click-evoked auditory brainstem responses (ABRs) revealed increased hearing thresholds in Cav 2.3+/- mice from both genders, whereas no alterations were observed in Cav 2.3-/- mice. Similar observations were made for tone burst-related ABRs in both genders. However, Cav 2.3 ablation seemed to prevent mutant mice from total hearing loss particularly in the higher frequency range (36-42 kHz). Amplitude growth function analysis revealed, i.a., significant reduction in ABR wave WI and WIII amplitude in mutant animals. In addition, alterations in WI -WIV interwave interval were observed in female Cav 2.3+/- mice whereas absolute latencies remained unchanged. In summary, our results demonstrate that Cav 2.3 VGCCs are mandatory for physiological auditory information processing in the ascending auditory tract.


Asunto(s)
Audiometría de Respuesta Evocada , Umbral Auditivo , Canales de Calcio Tipo N , Potenciales Evocados Auditivos del Tronco Encefálico , Estimulación Acústica , Animales , Tronco Encefálico , Canales de Calcio , Femenino , Masculino , Ratones
19.
Dialogues Clin Neurosci ; 21(2): 177-191, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31636492

RESUMEN

Alzheimer's disease (AD)-a complex disease showing multiple pathomechanistic alterations-is triggered by nonlinear dynamic interactions of genetic/epigenetic and environmental risk factors, which, ultimately, converge into a biologically heterogeneous disease. To tackle the burden of AD during early preclinical stages, accessible blood-based biomarkers are currently being developed. Specifically, next-generation clinical trials are expected to integrate positive and negative predictive blood-based biomarkers into study designs to evaluate, at the individual level, target druggability and potential drug resistance mechanisms. In this scenario, systems biology holds promise to accelerate validation and qualification for clinical trial contexts of use-including proof-of-mechanism, patient selection, assessment of treatment efficacy and safety rates, and prognostic evaluation. Albeit in their infancy, systems biology-based approaches are poised to identify relevant AD "signatures" through multifactorial and interindividual variability, allowing us to decipher disease pathophysiology and etiology. Hopefully, innovative biomarker-drug codevelopment strategies will be the road ahead towards effective disease-modifying drugs.
.


La Enfermedad de Alzheimer (EA) es una enfermedad compleja que presenta múltiples alteraciones patomecánicas, que se desencadena por interacciones dinámicas no lineales de factores de riesgo genéticos / epigenéticos y ambientales, los que, en definitiva, convergen en una enfermedad biológicamente heterogénea. Para hacer frente a la carga de la EA durante las etapas preclínicas tempranas, actualmente se están desarrollando biomarcadores sanguíneos de fácil accesibilidad. Específicamente, se espera que los ensayos clínicos de próxima generación integren biomarcadores sanguíneos predictivos tanto positivos como negativos en los diseños de los estudios para evaluar, a nivel individual, la capacidad de la droga objetivo y los posibles mecanismos de resistencia a los medicamentos. En este contexto, la biología de sistemas promete acelerar la validación y la calificación de su empleo en los ensayos clínicos, incluida la prueba del mecanismo, la selección de pacientes, la evaluación de la eficacia del tratamiento y los porcentajes de seguridad, y la evaluación pronóstica. A pesar de estar en sus comienzos, los enfoques basados en la biología de sistemas están preparados para identificar "firmas" de EA relevantes a través de la variabilidad multifactorial e interindividual, lo que nos permite descifrar la fisiopatología y la etiología de la enfermedad. Ojalá, las estrategias innovadoras conjuntas del desarrollo de biomarcadores y de medicamentos sean el camino adecuado para conseguir fármacos eficaces que modifiquen la enfermedad.


La maladie d'Alzheimer (MA) ­ maladie complexe présentant des altérations nombreuses pathomécaniques ­ est déclenchée par des interactions dynamiques non linéaires entre des facteurs de risques génétiques et épigénétiques et environnementaux qui, au bout du compte, aboutissent à une maladie biologiquement hétérogène. Pour réduire la charge de morbidité de la MA durant ses premiers stades précliniques, des biomarqueurs sanguins sont actuellement développés. Spécifiquement, la prochaine génération d'essais cliniques devrait intégrer ces biomarqueurs sanguins positifs ou négatifs prédictifs de la maladie dans des études qui auront pour but d'évaluer, à un niveau individuel, des cibles pouvant être traitées par des candidats médicaments et de potentiels mécanismes de résistance à ces médicaments. Dans ce contexte, la biologie des systèmes devrait permettre d'accélérer la validation et la qualification de leur utilisation dans les études cliniques ­ incluant la preuve du mécanisme d'action, la sélection des patients, la confirmation de l'efficacité du traitement et son niveau de sécurité, ainsi que l'évaluation pronostique. Bien que nous en soyons au tout début, les approches reposant sur la biologie des systèmes sont sur le point d'identifier des « signatures ¼ pertinentes de la MA grâce à des variables multifactorielles et interindividuelles, qui nous permettront d'élucider la pathophysiologie et l'étiologie de la maladie. Avec un peu de chance, les stratégies innovantes de codéveloppement de biomarqueurs et de médicaments nous mèneront vers des médicaments efficaces pour lutter contre la maladie.


Asunto(s)
Enfermedad de Alzheimer , Ensayos Clínicos como Asunto , Desarrollo de Medicamentos , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/tratamiento farmacológico , Biomarcadores/sangre , Diagnóstico Precoz , Determinación de la Elegibilidad , Humanos , Medicina de Precisión/métodos
20.
Schmerz ; 33(5): 378-383, 2019 Oct.
Artículo en Alemán | MEDLINE | ID: mdl-31243538

RESUMEN

The law on the amendment of the narcotics law and other regulations, which was accepted by consensus by the German Parliament, significantly expanded the options for the use of cannabis-based medicinal products. In individual cases, already approved cannabis-based medicinal products can also be prescribed outside the approved indication at the expense of the statutory health insurance funds (GKV). The cost of treatment with cannabis flowers and extracts as well as dronabinol, which are not approved under the drug law, will also be covered by the GKV upon application. Physicians must advise their patients on the options of treatment with cannabis-based medicinal products and support them in applying for reimbursement. The prescription of unauthorized medical cannabis products poses particular challenges, as there is no summary of product characteristics that is mandatory for authorized finished products. In addition, physicians are obliged to participate in an accompanying survey. To this end, they must send data to the Federal Institute for Drugs and Medical Devices providing information about treatment with cannabis-based medicinal products. When prescribing medical cannabis products as defined in the Act of 6 March 2017 amending the law on narcotic drugs and other regulations, physicians assume a special responsibility that goes far beyond the responsibility for the use of authorized finished medicinal products.


Asunto(s)
Cannabis , Legislación de Medicamentos , Marihuana Medicinal , Médicos , Alemania , Humanos , Médicos/legislación & jurisprudencia , Encuestas y Cuestionarios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...