Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxicol Sci ; 148(2): 409-20, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26354774

RESUMEN

TGFß2 (transforming growth factor-ß2) is a key growth factor regulating epithelial to mesenchymal transition (EMT). TGFß2 triggers cardiac progenitor cells to differentiate into mesenchymal cells and give rise to the cellular components of coronary vessels as well as cells of aortic and pulmonary valves. TGFß signaling is dependent on a dynamic on and off switch in Smad activity. Arsenite exposure of 1.34 µM for 24-48 h has been reported to disrupt Smad phosphorylation leading to deficits in TGFß2-mediated cardiac precursor differentiation and transformation. In this study, the molecular mechanism of acute arsenite toxicity on TGFß2-induced Smad2/3 nuclear shuttling and TGFß2-mediated cardiac EMT was investigated. A 4-h exposure to 5 µM arsenite blocks nuclear accumulation of Smad2/3 in response to TGFß2 without disrupting Smad phosphorylation or nuclear importation. The depletion of nuclear Smad is restored by knocking-down Smad-specific exportins, suggesting that arsenite augments Smad2/3 nuclear exportation. The blockage in TGFß2-Smad signaling is likely due to the loss of Zn(2+) cofactor in Smad proteins, as Zn(2+) supplementation reverses the disruption in Smad2/3 nuclear translocation and transcriptional activity by arsenite. This coincides with Zn(2+) supplementation rescuing arsenite-mediated deficits in cardiac EMT. Thus, zinc partially protects cardiac EMT from developmental toxicity by arsenite.


Asunto(s)
Arsenitos/toxicidad , Diferenciación Celular/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Células Madre/efectos de los fármacos , Factor de Crecimiento Transformador beta2/farmacología , Zinc/farmacología , Transporte Activo de Núcleo Celular/efectos de los fármacos , Animales , Transición Epitelial-Mesenquimal/efectos de los fármacos , Células HEK293 , Humanos , Carioferinas/genética , Carioferinas/metabolismo , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fosforilación , Interferencia de ARN , Transducción de Señal/efectos de los fármacos , Células Madre/metabolismo , Células Madre/patología , Factores de Tiempo , Transcripción Genética/efectos de los fármacos , Transfección
2.
Mol Cancer Res ; 10(12): 1544-54, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23193156

RESUMEN

The transmembrane mucin MUC1 is overexpressed in most ductal carcinomas, and its overexpression is frequently associated with metastatic progression. MUC1 can drive tumor initiation and progression via interactions with many oncogenic partners, including ß-catenin, the EGF receptor (EGFR) and Src. The decoy peptide protein transduction domain MUC1 inhibitory peptide (PMIP) has been shown to inhibit the tumor promoting activities of MUC1 in breast and lung cancer, including cell growth and invasion, and its usage suppresses metastatic progression in mouse models of breast cancer. To further characterize the reduced metastasis observed upon PMIP treatment, we conducted motility assays and observed that PMIP inhibits cell motility of breast cancer cells. To determine the mechanism by which PMIP inhibits motility, we evaluated changes in global gene transcription upon PMIP treatment, and identified a number of genes with altered expression in response to PMIP. Among these genes is the metastatic mediator, c-Met, a transmembrane tyrosine kinase that can promote cell scattering, migration, and invasion. To further investigate the role of c-Met in MUC1-dependent metastatic events, we evaluated the effects of MUC1 expression and EGFR activation on breast cancer cell scattering, branching, and migration. We found that MUC1 strongly promoted all of these events and this effect was further amplified by EGF treatment. Importantly, the effect of MUC1 and EGF on these phenotypes was dependent upon c-Met activity. Overall, these results indicate that PMIP can block the expression of a key metastatic mediator, further advancing its potential use as a clinical therapeutic.


Asunto(s)
Neoplasias de la Mama/patología , Movimiento Celular/genética , Mucina-1/genética , Mucina-1/metabolismo , Péptidos/farmacología , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Progresión de la Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Factor de Crecimiento Epidérmico/farmacología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Femenino , Humanos , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Transcripción Genética/efectos de los fármacos
3.
Toxicol Sci ; 116(1): 273-85, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20308225

RESUMEN

Arsenic is a naturally occurring metalloid and environmental contaminant. Arsenic exposure in drinking water is reported to cause cancer of the liver, kidneys, lung, bladder, and skin as well as birth defects, including neural tube, facial, and vasculogenic defects. The early embryonic period most sensitive to arsenic includes a variety of cellular processes. One key cellular process is epithelial-mesenchymal transition (EMT) where epithelial sheets develop into three-dimensional structures. An embryonic prototype of EMT is found in the atrioventricular (AV) canal of the developing heart, where endothelia differentiate to form heart valves. Effects of arsenic on this cellular process were examined by collagen gel invasion assay (EMT assay) using explanted AV canals from chicken embryo hearts. AV canals treated with 12.5-500 ppb arsenic showed a loss of mesenchyme at 12.5 ppb, and mesenchyme formation was completely inhibited at 500 ppb. Altered gene expression in arsenic-treated explants was investigated by microarray analysis. Genes whose expression was altered consistently at exposure levels of 10, 25, and 100 ppb were identified, and results showed that 25 ppb in vitro was particularly effective. Three hundred and eighty two genes were significantly altered at this exposure level. Cytoscape analysis of the microarray data using the chicken interactome identified four clusters of altered genes based on published relationships and pathways. This analysis identified cytoskeleton and cell adhesion-related genes whose disruption is consistent with an altered ability to undergo EMT. These studies show that EMT is sensitive to arsenic and that an interactome-based approach can be useful in identifying targets.


Asunto(s)
Arsénico/toxicidad , Colágeno , Células Epiteliales/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Mesodermo/efectos de los fármacos , Animales , Secuencia de Bases , Embrión de Pollo , Cartilla de ADN , Etiquetado Corte-Fin in Situ , Mesodermo/citología
4.
Circ Res ; 103(12): 1430-40, 2008 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-19008476

RESUMEN

Congenital heart defects occur at a rate of 5% and are the most prevalent birth defects. A better understanding of the complex signaling networks regulating heart development is necessary to improve repair strategies for congenital heart defects. The mitogen-activated protein 3 kinase (MEKK3) is important to early embryogenesis, but developmental processes affected by MEKK3 during heart morphogenesis have not been fully examined. We identify MEKK3 as a critical signaling molecule during endocardial cushion development. We report the detection of MEKK3 transcripts to embryonic hearts before, during, and after cardiac cushion cells have executed epithelial-to-mesenchymal transition (EMT). MEKK3 is observed to endocardial cells of the cardiac cushions with a diminishing gradient of expression into the cushions. These observations suggest that MEKK3 may function during production of cushion mesenchyme as required for valvular development and septation of the heart. We used a kinase inactive form of MEKK3 (MEKK3(KI)) in an in vitro assay that recapitulates in vivo EMT and show that MEKK3(KI) attenuates mesenchyme formation. Conversely, constitutively active MEKK3 (ca-MEKK3) triggers mesenchyme production in ventricular endocardium, a tissue that does not normally undergo EMT. MEKK3-driven mesenchyme production is further substantiated by increased expression of EMT-relevant genes, including TGFbeta(2), Has2, and periostin. Furthermore, we show that MEKK3 stimulates EMT via a TGFbeta(2)-dependent mechanism. Thus, the activity of MEKK3 is sufficient for developmental EMT in the heart. This knowledge provides a basis to understand how MEKK3 integrates signaling cascades activating endocardial cushion EMT.


Asunto(s)
Cojinetes Endocárdicos/embriología , Cojinetes Endocárdicos/enzimología , Células Epiteliales/citología , Células Epiteliales/enzimología , MAP Quinasa Quinasa Quinasa 3/fisiología , Mesodermo/embriología , Morfogénesis/fisiología , Factor de Crecimiento Transformador beta2/fisiología , Animales , Diferenciación Celular/fisiología , Cojinetes Endocárdicos/citología , Cojinetes Endocárdicos/metabolismo , Células Epiteliales/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , MAP Quinasa Quinasa Quinasa 3/deficiencia , MAP Quinasa Quinasa Quinasa 3/genética , MAP Quinasa Quinasa Quinasa 3/metabolismo , Mesodermo/citología , Mesodermo/metabolismo , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA