Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 618(7965): 543-549, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225983

RESUMEN

The development of paired appendages was a key innovation during evolution and facilitated the aquatic to terrestrial transition of vertebrates. Largely derived from the lateral plate mesoderm (LPM), one hypothesis for the evolution of paired fins invokes derivation from unpaired median fins via a pair of lateral fin folds located between pectoral and pelvic fin territories1. Whilst unpaired and paired fins exhibit similar structural and molecular characteristics, no definitive evidence exists for paired lateral fin folds in larvae or adults of any extant or extinct species. As unpaired fin core components are regarded as exclusively derived from paraxial mesoderm, any transition presumes both co-option of a fin developmental programme to the LPM and bilateral duplication2. Here, we identify that the larval zebrafish unpaired pre-anal fin fold (PAFF) is derived from the LPM and thus may represent a developmental intermediate between median and paired fins. We trace the contribution of LPM to the PAFF in both cyclostomes and gnathostomes, supporting the notion that this is an ancient trait of vertebrates. Finally, we observe that the PAFF can be bifurcated by increasing bone morphogenetic protein signalling, generating LPM-derived paired fin folds. Our work provides evidence that lateral fin folds may have existed as embryonic anlage for elaboration to paired fins.


Asunto(s)
Aletas de Animales , Evolución Biológica , Mesodermo , Pez Cebra , Animales , Aletas de Animales/anatomía & histología , Aletas de Animales/embriología , Aletas de Animales/crecimiento & desarrollo , Larva/anatomía & histología , Larva/crecimiento & desarrollo , Mesodermo/anatomía & histología , Mesodermo/embriología , Mesodermo/crecimiento & desarrollo , Pez Cebra/anatomía & histología , Pez Cebra/embriología , Pez Cebra/crecimiento & desarrollo , Proteínas Morfogenéticas Óseas/metabolismo
2.
JCI Insight ; 8(11)2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37140993

RESUMEN

Obesity-associated metabolic inflammation drives the development of insulin resistance and type 2 diabetes, notably through modulating innate and adaptive immune cells in metabolic organs. The nutrient sensor liver kinase B1 (LKB1) has recently been shown to control cellular metabolism and T cell priming functions of DCs. Here, we report that hepatic DCs from high-fat diet-fed (HFD-fed) obese mice display increased LKB1 phosphorylation and that LKB1 deficiency in DCs (CD11cΔLKB1) worsened HFD-driven hepatic steatosis and impaired glucose homeostasis. Loss of LKB1 in DCs was associated with increased expression of Th17-polarizing cytokines and accumulation of hepatic IL-17A+ Th cells in HFD-fed mice. Importantly, IL-17A neutralization rescued metabolic perturbations in HFD-fed CD11cΔLKB1 mice. Mechanistically, deficiency of the canonical LKB1 target AMPK in HFD-fed CD11cΔAMPKα1 mice recapitulated neither the hepatic Th17 phenotype nor the disrupted metabolic homeostasis, suggesting the involvement of other and/or additional LKB1 downstream effectors. We indeed provide evidence that the control of Th17 responses by DCs via LKB1 is actually dependent on both AMPKα1 salt-inducible kinase signaling. Altogether, our data reveal a key role for LKB1 signaling in DCs in protection against obesity-induced metabolic dysfunctions by limiting hepatic Th17 responses.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Diabetes Mellitus Tipo 2 , Ratones , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , Interleucina-17/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Obesidad/metabolismo , Hígado/metabolismo , Homeostasis , Células Dendríticas/metabolismo
3.
Methods Mol Biol ; 2618: 219-237, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36905520

RESUMEN

In response to different stimuli, dendritic cells (DCs) undergo metabolic reprogramming to support their function. Here we describe how fluorescent dyes and antibody-based approaches can be used to assess various metabolic parameters of DCs including glycolysis, lipid metabolism, mitochondrial activity, and the activity of important sensors and regulators of cellular metabolism, mTOR and AMPK. These assays can be performed using standard flow cytometry and will allow for the determination of metabolic properties of DC populations at single-cell level and to characterize metabolic heterogeneity within them.


Asunto(s)
Glucólisis , Fosforilación Oxidativa , Citometría de Flujo , Mitocondrias/metabolismo , Células Dendríticas/metabolismo
4.
Nat Commun ; 13(1): 1677, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35354817

RESUMEN

The mesothelium lines body cavities and surrounds internal organs, widely contributing to homeostasis and regeneration. Mesothelium disruptions cause visceral anomalies and mesothelioma tumors. Nonetheless, the embryonic emergence of mesothelia remains incompletely understood. Here, we track mesothelial origins in the lateral plate mesoderm (LPM) using zebrafish. Single-cell transcriptomics uncovers a post-gastrulation gene expression signature centered on hand2 in distinct LPM progenitor cells. We map mesothelial progenitors to lateral-most, hand2-expressing LPM and confirm conservation in mouse. Time-lapse imaging of zebrafish hand2 reporter embryos captures mesothelium formation including pericardium, visceral, and parietal peritoneum. We find primordial germ cells migrate with the forming mesothelium as ventral migration boundary. Functionally, hand2 loss disrupts mesothelium formation with reduced progenitor cells and perturbed migration. In mouse and human mesothelioma, we document expression of LPM-associated transcription factors including Hand2, suggesting re-initiation of a developmental program. Our data connects mesothelium development to Hand2, expanding our understanding of mesothelial pathologies.


Asunto(s)
Mesotelioma , Pez Cebra , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Epitelio/metabolismo , Mesotelioma/genética , Ratones , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
5.
Cell Metab ; 32(5): 889-900.e7, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33147486

RESUMEN

Differential WNT and Notch signaling regulates differentiation of Lgr5+ crypt-based columnar cells (CBCs) into intestinal cell lineages. Recently we showed that mitochondrial activity supports CBCs, while adjacent Paneth cells (PCs) show reduced mitochondrial activity. This implies that CBC differentiation into PCs involves a metabolic transition toward downregulation of mitochondrial dependency. Here we show that Forkhead box O (FoxO) transcription factors and Notch signaling interact in determining CBC fate. In agreement with the organoid data, Foxo1/3/4 deletion in mouse intestine induces secretory cell differentiation. Importantly, we show that FOXO and Notch signaling converge on regulation of mitochondrial fission, which in turn provokes stem cell differentiation into goblet cells and PCs. Finally, scRNA-seq-based reconstruction of CBC differentiation trajectories supports the role of FOXO, Notch, and mitochondria in secretory differentiation. Together, this points at a new signaling-metabolic axis in CBC differentiation and highlights the importance of mitochondria in determining stem cell fate.


Asunto(s)
Células Caliciformes , Intestinos/citología , Mitocondrias/metabolismo , Células de Paneth , Células Madre , Animales , Diferenciación Celular , Línea Celular , Factores de Transcripción Forkhead/metabolismo , Células Caliciformes/citología , Células Caliciformes/metabolismo , Ratones , Dinámicas Mitocondriales , Células de Paneth/citología , Células de Paneth/metabolismo , Receptores Notch/metabolismo , Células Madre/citología , Células Madre/metabolismo
6.
Nat Commun ; 10(1): 3857, 2019 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-31451684

RESUMEN

Cardiovascular lineages develop together with kidney, smooth muscle, and limb connective tissue progenitors from the lateral plate mesoderm (LPM). How the LPM initially emerges and how its downstream fates are molecularly interconnected remain unknown. Here, we isolate a pan-LPM enhancer in the zebrafish-specific draculin (drl) gene that provides specific LPM reporter activity from early gastrulation. In toto live imaging and lineage tracing of drl-based reporters captures the dynamic LPM emergence as lineage-restricted mesendoderm field. The drl pan-LPM enhancer responds to the transcription factors EomesoderminA, FoxH1, and MixL1 that combined with Smad activity drive LPM emergence. We uncover specific activity of zebrafish-derived drl reporters in LPM-corresponding territories of several chordates including chicken, axolotl, lamprey, Ciona, and amphioxus, revealing a universal upstream LPM program. Altogether, our work provides a mechanistic framework for LPM emergence as defined progenitor field, possibly representing an ancient mesodermal cell state that predates the primordial vertebrate embryo.


Asunto(s)
Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Mesodermo/embriología , Proteínas de Pez Cebra/genética , Animales , Embrión no Mamífero , Inducción Embrionaria/genética , Gastrulación/genética , Microscopía Intravital , Pez Cebra
7.
Nat Commun ; 9(1): 2001, 2018 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-29784942

RESUMEN

The vertebrate heart develops from several progenitor lineages. After early-differentiating first heart field (FHF) progenitors form the linear heart tube, late-differentiating second heart field (SHF) progenitors extend the atrium and ventricle, and form inflow and outflow tracts (IFT/OFT). However, the position and migration of late-differentiating progenitors during heart formation remains unclear. Here, we track zebrafish heart development using transgenics based on the cardiopharyngeal gene tbx1. Live imaging uncovers a tbx1 reporter-expressing cell sheath that continuously disseminates from the lateral plate mesoderm towards the forming heart tube. High-speed imaging and optogenetic lineage tracing corroborates that the zebrafish ventricle forms through continuous addition from the undifferentiated progenitor sheath followed by late-phase accrual of the bulbus arteriosus (BA). FGF inhibition during sheath migration reduces ventricle size and abolishes BA formation, refining the window of FGF action during OFT formation. Our findings consolidate previous end-point analyses and establish zebrafish ventricle formation as a continuous process.


Asunto(s)
Células Madre/citología , Pez Cebra/embriología , Animales , Diferenciación Celular , Linaje de la Célula , Femenino , Regulación del Desarrollo de la Expresión Génica , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/embriología , Ventrículos Cardíacos/metabolismo , Masculino , Mesodermo/embriología , Mesodermo/metabolismo , Morfogénesis , Células Madre/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...