Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
2.
Rev Aquac ; 15(2): 491-535, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38504717

RESUMEN

Disease and parasitism cause major welfare, environmental and economic concerns for global aquaculture. In this review, we examine the status and potential of technologies that exploit genetic variation in host resistance to tackle this problem. We argue that there is an urgent need to improve understanding of the genetic mechanisms involved, leading to the development of tools that can be applied to boost host resistance and reduce the disease burden. We draw on two pressing global disease problems as case studies-sea lice infestations in salmonids and white spot syndrome in shrimp. We review how the latest genetic technologies can be capitalised upon to determine the mechanisms underlying inter- and intra-species variation in pathogen/parasite resistance, and how the derived knowledge could be applied to boost disease resistance using selective breeding, gene editing and/or with targeted feed treatments and vaccines. Gene editing brings novel opportunities, but also implementation and dissemination challenges, and necessitates new protocols to integrate the technology into aquaculture breeding programmes. There is also an ongoing need to minimise risks of disease agents evolving to overcome genetic improvements to host resistance, and insights from epidemiological and evolutionary models of pathogen infestation in wild and cultured host populations are explored. Ethical issues around the different approaches for achieving genetic resistance are discussed. Application of genetic technologies and approaches has potential to improve fundamental knowledge of mechanisms affecting genetic resistance and provide effective pathways for implementation that could lead to more resistant aquaculture stocks, transforming global aquaculture.

3.
Pathogens ; 11(8)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-36014998

RESUMEN

Complex gill disorder (CGD) is an important condition in Atlantic salmon aquaculture, but the roles of the putative aetiological agents in the pathogenesis are uncertain. A longitudinal study was undertaken on two salmon farms in Scotland to determine the variations in loads of CGD-associated pathogens (Desmozoon lepeophtherii, Candidatus Branchiomonas cysticola, salmon gill pox virus (SGPV) and Neoparamoeba perurans) estimated by quantitative PCR. In freshwater, Ca. B. cysticola and SGPV were detected in both populations, but all four pathogens were detected on both farms during the marine stage. Candidatus B. cysticola and D. lepeophtherii were detected frequently, with SGPV detected sporadically. In the marine phase, increased N. perurans loads associated significantly (p < 0.05) with increases in semi-quantitative histological gill-score (HGS). Increased Ca. B. cysticola load associated significantly (p < 0.05) with increased HGS when only Farm B was analysed. Higher loads of D. lepeophtherii were associated significantly (p < 0.05) with increased HGS on Farm B despite the absence of D. lepeophtherii-type microvesicles. Variations in SGPV were not associated significantly (p > 0.05) with changes in HSG. This study also showed that water temperature (season) and certain management factors were associated with higher HGS. This increase in histological gill lesions will have a deleterious impact on fish health and welfare, and production performance.

4.
Fish Shellfish Immunol ; 128: 74-81, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35843527

RESUMEN

Current treatment strategies for relevant infectious diseases in Atlantic salmon (Salmo salar L.) include the use of low salinity or freshwater bathing. However, often availability is restricted, and hydrogen peroxide (H2O2) is used as an alternative. The potential impacts of H2O2 on fish mucosal tissues, especially the gills therefore need to be considered. In this study the mucosal and immunological effects of H2O2 treatment on the gills of healthy Atlantic salmon were examined by gene expression (qPCR) and immunohistochemistry (IHC) investigating T-cell, B-cell, and mucin activity. Healthy fish were treated with H2O2 and sampled at different times: 4 h, 24 h and 14 days post-H2O2 treatment (dpt) (total n = 18) to investigate the effect of holding time and H2O2 treatment. Treatment with H2O2 resulted in up-regulation of markers for T-cell activity and anti-inflammatory response and down-regulation of mucin expression in the gills at 14 dpt compared to fish sampled prior to treatment (0h; n = 5 fish). These findings were supported by IHC analysis, which despite being highly variable between samples, showed an increase in the number of CD3+ T cells at 14 dpt in 50% of treated fish compared to pre-treatment fish. The results from this study suggest that H2O2 treatment does not immune compromise healthy Atlantic salmon after 14 dpt (i.e., post-recovery) but modulates gill immune activity and disrupts the mucus covering of the gills. However, further studies are required to determine whether the effects observed are related to H2O2 treatment in isolation or other variables such as holding time or environmental factors.


Asunto(s)
Enfermedades de los Peces , Salmo salar , Animales , Antiinflamatorios/metabolismo , Branquias , Peróxido de Hidrógeno/metabolismo , Mucinas/metabolismo , Moco/metabolismo
5.
Sci Rep ; 12(1): 10356, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35725748

RESUMEN

The pyrethroid deltamethrin (DTM) is used to treat Atlantic salmon (Salmo salar) against salmon louse (Lepeophtheirus salmonis) infestations. However, DTM resistance has evolved in L. salmonis and is currently common in the North Atlantic. This study aimed to re-assess the association between DTM resistance and mitochondrial (mtDNA) mutations demonstrated in previous reports. Among 218 L. salmonis collected in Scotland in 2018-2019, 89.4% showed DTM resistance in bioassays, while 93.6% expressed at least one of four mtDNA single nucleotide polymorphisms (SNPs) previously shown to be resistance associated. Genotyping at further 14 SNP loci allowed to define three resistance-associated mtDNA haplotypes, named 2, 3 and 4, occurring in 72.0%, 14.2% and 7.3% of samples, respectively. L. salmonis strains IoA-02 (haplotype 2) and IoA-10 (haplotype 3) both showed high levels (~ 100-fold) of DTM resistance, which was inherited maternally in crossing experiments. MtDNA haplotypes 2 and 3 differed in genotype for 17 of 18 studied SNPs, but shared one mutation that causes an amino acid change (Leu107Ser) in the cytochrome c oxidase subunit 1 (COX1) and was present in all DTM resistant while lacking in all susceptible parasites. We conclude that Leu107Ser (COX1) is a main genetic determinant of DTM resistance in L. salmonis.


Asunto(s)
Copépodos , Enfermedades de los Peces , Salmo salar , Animales , Copépodos/genética , ADN Mitocondrial/genética , Enfermedades de los Peces/genética , Mutación , Nitrilos , Piretrinas , Salmo salar/genética , Salmón/genética
6.
J Fish Dis ; 45(6): 871-882, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35352838

RESUMEN

The microsporidian Desmozoon lepeophtherii Freeman and Sommerville, 2009 is considered significant in the pathogenesis of gill disease in Atlantic salmon (Salmo salar Linnaeus, 1758). Due to the difficulty in detecting D. lepeophtherii in tissue sections, infections are normally diagnosed by molecular methods, routine haematoxylin and eosin (H&E) stained gill tissue sections and the use of other histochemical stains and labels to confirm the presence of spores. An in situ hybridization (ISH) protocol specific for D. lepeophtherii was developed using DIG-labelled oligonucleotide probes. Diseased Atlantic salmon gills were analysed by ISH, calcofluor white (CW) and H&E. All methods showed high levels of specificity (100%) in their ability to detect D. lepeophtherii, but the sensitivity was higher with ISH (92%), compared with CW (64%) and the presence of microvesicles on H&E stained sections (52%). High levels of D. lepeophtherii spores were significantly associated (p < .05) with the development of D. lepeophtherii-associated pathology in the gills, with Ct values below 19 and over 100 microsporidia/10 mm2 of gill tissue (from the ISH counts) seemingly necessary for the development of microvesicles. The ISH method has the advantage over other histological techniques in that it allows all life stages of the microsporidian to be detected in infected salmon gill tissue sections.


Asunto(s)
Enfermedades de los Peces , Salmo salar , Animales , ADN , Enfermedades de los Peces/diagnóstico , Enfermedades de los Peces/patología , Branquias/patología , Hibridación in Situ , Microsporidios
7.
Pathogens ; 11(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35056010

RESUMEN

Amyloodiniosis is a disease resulting from infestation by the ectoparasitic dinoflagellate Amyloodinium ocellatum (AO) and is a threat for fish species such as European sea bass (ESB, Dicentrarchus labrax), which are farmed in lagoon and land-based rearing sites. During the summer, when temperatures are highest, mortality rates can reach 100%, with serious impacts for the aquaculture industry. As no effective licensed therapies currently exist, this study was undertaken to improve knowledge of the biology of AO and of the host-parasite relationship between the protozoan and ESB, in order to formulate better prophylactic/therapeutic treatments targeting AO. To achieve this, a multi-modal study was performed involving a broad range of analytical modalities, including conventional histology (HIS), immunohistochemistry (IHC) and confocal laser scanning microscopy (CLSM). Gills and the oro-pharyngeal cavity were the primary sites of amyloodiniosis, with hyperplasia and cell degeneration more evident in severe infestations (HIS). Plasmacells and macrophages were localised by IHC and correlated with the parasite burden in a time-course experimental challenge. CLSM allowed reconstruction of the 3D morphology of infecting trophonts and suggested a protein composition for its anchoring and feeding structures. These findings provide a potential starting point for the development of new prophylactic/therapeutic controls.

8.
Genomics ; 113(6): 3842-3850, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34547402

RESUMEN

Genetic resistance to infectious pancreatic necrosis virus (IPNV) in Atlantic salmon is a rare example of a trait where a single locus (QTL) explains almost all of the genetic variation. Genetic marker tests based on this QTL on salmon chromosome 26 have been widely applied in selective breeding to markedly reduce the incidence of the disease. In the current study, whole genome sequencing and functional annotation approaches were applied to characterise genes and variants in the QTL region. This was complemented by an analysis of differential expression between salmon fry of homozygous resistant and homozygous susceptible genotypes challenged with IPNV. These analyses pointed to the NEDD-8 activating enzyme 1 (nae1) gene as a putative functional candidate underlying the QTL effect. The role of nae1 in IPN resistance was further assessed via CRISPR-Cas9 knockout of the nae1 gene and chemical inhibition of the nae1 protein activity in Atlantic salmon cell lines, both of which resulted in highly significant reduction in productive IPNV replication. In contrast, CRISPR-Cas9 knockout of a candidate gene previously purported to be a cellular receptor for the virus (cdh1) did not have a major impact on productive IPNV replication. These results suggest that nae1 is the causative gene underlying the major QTL affecting resistance to IPNV in salmon, provide further evidence for the critical role of neddylation in host-pathogen interactions, and highlight the value in combining high-throughput genomics approaches with targeted genome editing to understand the genetic basis of disease resistance.


Asunto(s)
Enfermedades de los Peces , Virus de la Necrosis Pancreática Infecciosa , Salmo salar , Animales , Enfermedades de los Peces/genética , Marcadores Genéticos , Sitios de Carácter Cuantitativo , Salmo salar/genética
9.
Artículo en Inglés | MEDLINE | ID: mdl-34098083

RESUMEN

The pyrethroid deltamethrin and the macrocyclic lactone emamectin benzoate (EMB) are used to treat infestations of farmed salmon by parasitic salmon lice, Lepeophtheirus salmonis. While the efficacy of both compounds against Atlantic populations of the parasite has decreased as a result of the evolution of resistance, the molecular mechanisms of drug resistance in L. salmonis are currently not fully understood. The functionally diverse carboxylesterases (CaE) family includes members involved in pesticide resistance phenotypes of terrestrial arthropods. The present study had the objective to characterize the CaE family in L. salmonis and assess its role in drug resistance. L. salmonis CaE homologues were identified by homology searches in the parasite's transcriptome and genome. The transcript expression of CaEs predicted to be catalytically competent was studied using quantitative reverse-transcription PCR in drug susceptible and multi-resistant L. salmonis. The above strategy led to the identification of 21 CaEs genes/pseudogenes. Phylogenetic analyses assigned 13 CaEs to clades involved in neurodevelopmental signaling and cell adhesion, while three sequences were predicted to encode secreted enzymes. Ten CaEs were identified as being potentially catalytically competent. Transcript expression of acetylcholinesterase (ace1b) was significantly increased in multi-resistant lice compared to drug-susceptible L. salmonis, with transcript abundance further increased in preadult-II females following EMB exposure. In summary, results from the present study demonstrate that L. salmonis possesses fewer CaE gene family members than most arthropods characterized so far. Drug resistance in L. salmonis was associated with overexpression of ace1b.


Asunto(s)
Hidrolasas de Éster Carboxílico/genética , Copépodos/enzimología , Copépodos/genética , Regulación Enzimológica de la Expresión Génica/fisiología , Animales , Antiparasitarios/metabolismo , Antiparasitarios/farmacología , Insecticidas/metabolismo , Insecticidas/farmacología , Ivermectina/análogos & derivados , Ivermectina/metabolismo , Ivermectina/farmacología , Nitrilos/metabolismo , Nitrilos/farmacología , Filogenia , Piretrinas/metabolismo , Piretrinas/farmacología
10.
Vet Immunol Immunopathol ; 234: 110217, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33647857

RESUMEN

The ectoparasite protozoan Amyloodinium ocellatum (AO) is the causative agent of amyloodiniosis in European seabass (ESB, Dicentrarchus labrax). There is a lack of information about basic molecular immune response mechanisms of ESB during AO infestation. Therefore, to compare gene expression between experimental AO-infested ESB tissues and uninfested ESB tissues (gills and head kidney) RNA-seq was adopted. The RNA-seq revealed multiple differentially expressed genes (DEG), namely 679 upregulated genes and 360 downregulated genes in the gills, and 206 upregulated genes and 170 downregulated genes in head kidney. In gills, genes related to the immune system (perforin, CC1) and protein binding were upregulated. Several genes involved in IFN related pathways were upregulated in the head kidney. Subsequently, to validate the DEG from amyloodiniosis, 26 ESB (mean weight 14 g) per tank in triplicate were bath challenged for 2 h with AO (3.5 × 106/tank; 70 dinospores/mL) under controlled conditions (26-28 °C and 34‰ salinity). As a control group (non-infested), 26 ESB per tank in triplicate were also used. Changes in the expression of innate immune genes in gills and head kidney at 2, 3, 5, 7 and 23 dpi were analysed using real-time PCR. The results indicated that the expression of cytokines (CC1, IL-8) and antimicrobial peptide (Hep) were strongly stimulated and reached a peak at 5 dpi in the early infestation stage, followed by a gradual reduction in the recovery stage (23 dpi). Noticeably, the immunoglobulin (IgM) expression was higher at 23 dpi compared to 7 dpi. Furthermore, in-situ hybridization showed positive signals of CC1 mRNA in AO infested gills compared to the control group. Altogether, chemokines were involved in the immune process under AO infestation and this evidence allows a better understanding of the immune response in European seabass during amyloodiniosis.


Asunto(s)
Lubina/inmunología , Dinoflagelados/inmunología , Enfermedades de los Peces/inmunología , Expresión Génica , Inmunidad Innata/genética , Infecciones Protozoarias en Animales/inmunología , Animales , Branquias/parasitología , Riñón Cefálico/inmunología , Riñón Cefálico/parasitología , Inmunidad Innata/inmunología , ARN Mensajero/genética
11.
J Fish Dis ; 44(7): 863-879, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33586246

RESUMEN

Monitoring of planktonic salmon louse (Lepeophtheirus salmonis salmonis) abundance and parameterization of key life-history traits has been hindered by labour-intensive and error-prone quantification using traditional light microscopy. Fluorescence illumination has been proposed as a means of improving visualization, but prior to this study adequate investigation of the relevant fluorescence profiles and measurement conditions has not been undertaken. We investigated the fluorescence profiles of L. salmonis and non-target copepod spp. with excitation and emission matrices (200-600 nm) and identified unique fluorescence signals. Fluorescence microscopy using excitation wavelengths of 470 ± 40 nm, and emission wavelengths of 525 ± 50 nm, showed that after 90 days of formalin storage salmon lice have a mean fluorescence intensity that is 2.4 times greater than non-target copepods (copepodid and adult stages). A 7-day heat treatment of 42°C in formalin increased the difference between salmon louse copepodids and non-target copepods to a factor of 3.6, eliminating the need for prolonged storage. Differences in the fluorescence signal and endogenous fluorophores were investigated with respect to variation in sea lice species, age, stage and host fish origin. Under the conditions outlined in this paper, the fluorescence signal was found to be a reliable means of visualizing and differentiating salmon lice from non-target zooplankters. Adaptation of the fluorescence signal would greatly expedite traditional methods of enumerating salmon louse larvae in plankton samples and could provide a means of automated detection.


Asunto(s)
Copépodos/fisiología , Infestaciones Ectoparasitarias/veterinaria , Enfermedades de los Peces/parasitología , Estadios del Ciclo de Vida/fisiología , Imagen Óptica/métodos , Zooplancton , Animales , Infestaciones Ectoparasitarias/parasitología , Salmón/parasitología
12.
Parasit Vectors ; 14(1): 34, 2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33422145

RESUMEN

BACKGROUND: Gyrodactylus salaris Malmberg, 1957 is an OIE (Office International des Epizooties)-listed parasitic pathogen and had until the current study been reported from 19 countries across Europe, although many of these records require confirmation. The last comprehensive evaluation regarding the distribution of G. salaris, however, was made in 2007, although some of the states identified as being G. salaris-positive were ascribed this status based on misidentifications, on partial data resulting from either morphological or molecular tests, or from records that have not been revisited since their early reporting. It is thus important to go through the reports on G. salaris to obtain a status for each country. METHODS: To provide a revised update of the G. salaris distribution, a literature review was necessary. This literature, however, was not always readily accessible and, in certain cases, the article only made superficial reference to the parasite without providing details or data to support the identification. In most cases, the original specimens were not deposited in a national collection. Additional Gyrodactylus material for the current study was obtained from selected salmonid populations with the aim to contribute to current understanding regarding the distribution of G. salaris. Additional parasite material collected for this study was processed following standard procedures for species identification in Gyrodactylus [1]. RESULTS: From the work conducted in the current study, G. salaris is reported from a further three regions in Italy, alongside three other species, and appears to occur extensively throughout central Italy without causing significant mortalities to its rainbow trout, Oncorhynchus mykiss (Walbaum), host. The analysis of archive material from G. salaris-positive farms would suggest that G. salaris has been in this country since at least 2000. Material obtained from rainbow trout from Finland and Germany are confirmed as G. salaris, supporting existing data for these countries. No specimens of G. salaris, however, were found in the additional Gyrodactylus material obtained from rainbow trout reared in Portugal and Spain. A morphologically similar species, Gyrodactylus teuchis Lautraite, Blanc, Thiery, Daniel et Vigneulle, 1999, however, was found. CONCLUSIONS: Following the present review, Gyrodactylus salaris is reported from 23 out of 50 recognised states throughout Europe; only records from 14 of these states have been confirmed by either morphology and/or by an appropriate molecular test and are considered valid, while only nine of these records have been confirmed by a combination of both methods.


Asunto(s)
Trematodos , Infecciones por Trematodos/parasitología , Animales , Europa (Continente)/epidemiología , Trematodos/anatomía & histología , Trematodos/clasificación , Trematodos/genética , Infecciones por Trematodos/epidemiología
13.
Pest Manag Sci ; 77(2): 1052-1060, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33001569

RESUMEN

BACKGROUND: The pyrethroid deltamethrin is used to treat infestations of farmed salmon by parasitic salmon lice, Lepeophtheirus salmonis (Krøyer). However, the efficacy of deltamethrin for salmon delousing is threatened by resistance development. In terrestrial arthropods, knockdown resistance (kdr) mutations of the voltage-gated sodium channel (Nav ), the molecular target for pyrethroids, can cause deltamethrin resistance. A putative kdr mutation of an L. salmonis sodium channel homologue (LsNav 1.3 I936V) has been identified previously. At the same time, deltamethrin resistance of L. salmonis has been shown to be inherited maternally and to be associated with mitochondrial DNA (mtDNA) mutations. This study assessed potential roles of the above putative kdr mutation as a determinant of deltamethrin resistance in laboratory strains and field populations of L. salmonis. RESULTS: The deltamethrin-resistant L. salmonis strain IoA-02 expresses the LsNav 1.3 I936V mutation but was susceptible to the non-ester pyrethroid etofenprox, a compound against which pyrethroid-resistant arthropods are usually cross-resistant if resistance is caused by Nav mutations. In a family derived from a cross between an IoA-02 male and a drug-susceptible female lacking the kdr mutation, deltamethrin resistance was not associated with the genotype at the LsNav 1.3 locus (P > 0.05). Similarly, in Scottish field populations of L. salmonis, LsNav 1.3 I936V showed no association with deltamethrin resistance. By contrast, genotypes at the mtDNA loci A14013G and A9030G were significantly associated with deltamethrin resistance (P < 0.001). CONCLUSION: In the studied L. salmonis isolates, deltamethrin resistance was unrelated to the LsNav 1.3 I936V mutation, but showed close association with mtDNA mutations.


Asunto(s)
Copépodos , Enfermedades de los Peces , Piretrinas , Canales de Sodio Activados por Voltaje , Animales , Copépodos/genética , Femenino , Resistencia a los Insecticidas/genética , Masculino , Mutación , Nitrilos , Piretrinas/farmacología , Salmón , Canales de Sodio Activados por Voltaje/genética
14.
Front Immunol ; 11: 2113, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013890

RESUMEN

Infectious pancreatic necrosis virus (IPNV) infection has been a major problem in salmonid aquaculture. Marker-assisted selection of individuals with resistant genotype at the major IPN quantitative trait locus (IPN-QTL) has significantly reduced mortality in recent years. We have identified host miRNAs that respond to IPNV challenge in salmon fry that were either homozygous resistant (RR) or homozygous susceptible (SS) for the IPN-QTL. Small RNA-sequenced control samples were compared to samples collected at 1, 7, and 20 days post challenge (dpc). This revealed 72 differentially expressed miRNAs (DE miRNAs). Viral load (VL) was lower in RR vs. SS individuals at 7 and 20 dpc. However, analysis of miRNA expression changes revealed no differences between RR vs. SS individuals in controls, at 1 or 7 dpc, while 38 "high viral load responding" miRNAs (HVL-DE miRNAs) were identified at 20 dpc. Most of the HVL-DE miRNAs showed changes that were more pronounced in the high VL SS group than in the low VL RR group when compared to the controls. The absence of differences between QTL groups in controls, 1 and 7 dpc indicates that the QTL genotype does not affect miRNA expression in healthy fish or their first response to viral infections. The miRNA differences at 20 dpc were associated with the QTL genotype and could, possibly, contribute to differences in resistance/susceptibility at the later stage of infection. In silico target gene predictions revealed that 180 immune genes were putative targets, and enrichment analysis indicated that the miRNAs may regulate several major immune system pathways. Among the targets of HVL-DE miRNAs were IRF3, STAT4, NFKB2, MYD88, and IKKA. Interestingly, TNF-alpha paralogs were targeted by different DE miRNAs. Most DE miRNAs were from conserved miRNA families that respond to viral infections in teleost (e.g., miR-21, miR-146, miR-181, miR-192, miR-221, miR-462, miR-731, and miR-8159), while eight were species specific. The miRNAs showed dynamic temporal changes implying they would affect their target genes differently throughout disease progression. This shows that miRNAs are sensitive to VL and disease progression, and may act as fine-tuners of both immediate immune response activation and the later inflammatory processes.


Asunto(s)
Infecciones por Birnaviridae/veterinaria , Enfermedades de los Peces/genética , Interacciones Huésped-Patógeno/genética , Virus de la Necrosis Pancreática Infecciosa/fisiología , MicroARNs/genética , Salmo salar/genética , Animales , Secuencia de Bases , Infecciones por Birnaviridae/genética , Infecciones por Birnaviridae/inmunología , Infecciones por Birnaviridae/virología , Simulación por Computador , Progresión de la Enfermedad , Resistencia a la Enfermedad , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Predisposición Genética a la Enfermedad , Genotipo , Interacciones Huésped-Patógeno/inmunología , Sitios de Carácter Cuantitativo , ARN Viral/análisis , RNA-Seq , Salmo salar/crecimiento & desarrollo , Salmo salar/inmunología , Salmo salar/virología , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico , Análisis de Matrices Tisulares , Carga Viral
15.
J Fish Dis ; 43(11): 1463-1472, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32882753

RESUMEN

Routine gill swabbing is a non-destructive sampling method used for the downstream qPCR detection and quantitation of the pathogen Neoparamoeba perurans, a causative agent of amoebic gill disease (AGD). Three commercially available swabs were compared aiming their application for timelier AGD diagnosis (Calgiswab® (calcium alginate fibre-tipped), Isohelix® DNA buccal and cotton wool-tipped). Calcium alginate is soluble in most sodium salts, which potentially allows the total recovery of biological material, hence a better extraction of target organisms' DNA. Thus, this study consisted of (a) an in vitro assessment involving spiking of the swabs with known amounts of amoebae and additional assessment of retrieval efficiency of amoebae from agar plates; (b) in vivo testing by swabbing of gill arches (second, third and fourth) of AGD-infected fish. Both in vitro and in vivo experiments identified an enhanced amoeba retrieval with Calgiswab® and Isohelix® swabs in comparison with cotton swabs. Additionally, the third and fourth gill arches presented significantly higher amoebic loads compared to the second gill arch. Results suggest that limiting routine gill swabbing to one or two arches, instead of all, could likely lead to reduced stress-related effects incurred by handling and sampling and a timelier diagnosis of AGD.


Asunto(s)
Amebiasis/diagnóstico , Enfermedades de los Peces/diagnóstico , Manejo de Especímenes/instrumentación , Amebozoos/aislamiento & purificación , Animales , Branquias/parasitología , Reacción en Cadena en Tiempo Real de la Polimerasa , Salmo salar
16.
BMC Genet ; 21(1): 57, 2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32471356

RESUMEN

BACKGROUND: Domestication is the process by which organisms become adapted to the human-controlled environment. Since the selection pressures that act upon cultured and natural populations differ, adaptations that favour life in the domesticated environment are unlikely to be advantageous in the wild. Elucidation of the differences between wild and domesticated Atlantic salmon may provide insights into some of the genomic changes occurring during domestication, and, help to predict the evolutionary consequences of farmed salmon escapees interbreeding with wild conspecifics. In this study the transcriptome of the offspring of wild and domesticated Atlantic salmon were compared using a common-garden experiment under standard hatchery conditions and in response to an applied crowding stressor. RESULTS: Transcriptomic differences between wild and domesticated crosses were largely consistent between the control and stress conditions, and included down-regulation of environmental information processing, immune and nervous system pathways and up-regulation of genetic information processing, carbohydrate metabolism, lipid metabolism and digestive and endocrine system pathways in the domesticated fish relative to their wild counterparts, likely reflective of different selection pressures acting in wild and cultured populations. Many stress responsive functions were also shared between crosses and included down-regulation of cellular processes and genetic information processing and up-regulation of some metabolic pathways, lipid and energy in particular. The latter may be indicative of mobilization and reallocation of energy resources in response to stress. However, functional analysis indicated that a number of pathways behave differently between domesticated and wild salmon in response to stress. Reciprocal F1 hybrids permitted investigation of inheritance patterns that govern transcriptomic differences between these genetically divergent crosses. Additivity and maternal dominance accounted for approximately 42 and 25% of all differences under control conditions for both hybrids respectively. However, the inheritance of genes differentially expressed between crosses under stress was less consistent between reciprocal hybrids, potentially reflecting maternal environmental effects. CONCLUSION: We conclude that there are transcriptomic differences between the domesticated and wild salmon strains studied here, reflecting the different selection pressures operating on them. Our results indicate that stress may affect certain biological functions differently in wild, domesticated and hybrid crosses and these should be further investigated.


Asunto(s)
Salmo salar/genética , Estrés Fisiológico , Transcriptoma , Animales , Animales Salvajes/genética , Cruzamientos Genéticos , Domesticación , Ambiente , Explotaciones Pesqueras , Genes Dominantes , Patrón de Herencia , Análisis de Secuencia por Matrices de Oligonucleótidos , Selección Genética
17.
BMC Genomics ; 21(1): 271, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32228433

RESUMEN

BACKGROUND: Gill health is one of the main concerns for Atlantic salmon aquaculture, and Amoebic Gill Disease (AGD), attributable to infection by the amoeba Neoparamoeba perurans, is a frequent cause of morbidity. In the absence of preventive measures, increasing genetic resistance of salmon to AGD via selective breeding can reduce the incidence of the disease and mitigate gill damage. Understanding the mechanisms leading to AGD resistance and the underlying causative genomic features can aid in this effort, while also providing critical information for the development of other control strategies. AGD resistance is considered to be moderately heritable, and several putative QTL have been identified. The aim of the current study was to improve understanding of the mechanisms underlying AGD resistance, and to identify putative causative genomic factors underlying the QTL. To achieve this, RNA was extracted from the gill and head kidney of AGD resistant and susceptible animals following a challenge with N. perurans, and sequenced. RESULTS: Comparison between resistant and susceptible animals primarily highlighted differences mainly in the local immune response in the gill, involving red blood cell genes and genes related to immune function and cell adhesion. Differentially expressed immune genes pointed to a contrast in Th2 and Th17 responses, which is consistent with the increased heritability observed after successive challenges with the amoeba. Five QTL-region candidate genes showed differential expression, including a gene connected to interferon responses (GVINP1), a gene involved in systemic inflammation (MAP4K4), and a positive regulator of apoptosis (TRIM39). Analyses of allele-specific expression highlighted a gene in the QTL region on chromosome 17, cellular repressor of E1A-stimulated genes 1 (CREG1), showing allelic differential expression suggestive of a cis-acting regulatory variant. CONCLUSIONS: In summary, this study provides new insights into the mechanisms of resistance to AGD in Atlantic salmon, and highlights candidate genes for further functional studies that can further elucidate the genomic mechanisms leading to resistance and contribute to enhancing salmon health via improved genomic selection.


Asunto(s)
Amebiasis/genética , Enfermedades de los Peces/genética , Salmo salar/genética , Análisis de Secuencia de ARN/métodos , Alelos , Animales , Genómica/métodos , Transcriptoma/genética
18.
Parasit Vectors ; 13(1): 88, 2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-32070416

RESUMEN

BACKGROUND: It is hypothesised that being a blood-feeding ectoparasite, Argulus foliaceus (Linnaeus, 1758), uses similar mechanisms for digestion and host immune evasion to those used by other haematophagous ecdysozoa, including caligid copepods (e.g. sea louse). We recently described and characterised glands associated with the feeding appendages of A. foliaceus using histological techniques. The work described in the present study is the first undertaken with the objective of identifying and partially characterising the components secreted from these glands using a proteomic approach. METHODS: Argulus foliaceus parasites were sampled from the skin of rainbow trout (Oncorhynchus mykiss), from Loch Fad on the Isle of Bute, Scotland, UK. The proteins from A. foliaceus secretory/excretory products (SEPs) were collected from the supernatant of artificial freshwater conditioned with active adult parasites (n = 5-9 per ml; n = 560 total). Proteins within the SEPs were identified and characterised using LC-ESI-MS/MS analysis. Data are available via ProteomeXchange with identifier PXD016226. RESULTS: Data mining of a protein database translated from an A. foliaceus dataset using ProteinScape allowed identification of 27 predicted protein sequences from the A. foliaceus SEPs, each protein matching the criteria of 2 peptides with at least 4 contiguous amino acids. Nine proteins had no matching sequence through OmicsBox (Blast2GO) analysis searches suggesting that Argulus spp. may additionally have unique proteins present in their SEPs. SignalP 5.0 software, identified 13 proteins with a signal sequence suggestive of signal peptides and supportive of secreted proteins being identified. Notably, the functional characteristics of identified A. foliaceus proteins/domains have also been described from the salivary glands and saliva of other blood-feeding arthropods such as ticks. Identified proteins included: transporters, peroxidases, metalloproteases, proteases and serine protease inhibitors which are known to play roles in parasite immune evasion/induction (e.g. astacin), immunomodulation (e.g. serpin) and digestion (e.g. trypsin). CONCLUSIONS: To our knowledge, the present study represents the first proteomic analysis undertaken for SEPs from any branchiuran fish louse. Here we reveal possible functional roles of A. foliaceus SEPs in digestion and immunomodulation, with a number of protein families shared with other haematophagous ectoparasites. A number of apparently unique secreted proteins were identified compared to other haematophagous ecdysozoa.


Asunto(s)
Arguloida/química , Proteínas de Artrópodos/química , Oncorhynchus mykiss/parasitología , Secuencia de Aminoácidos , Animales , Arguloida/genética , Femenino , Enfermedades de los Peces/parasitología , Agua Dulce , Interacciones Huésped-Parásitos , Masculino , Proteómica , Piel/parasitología , Espectrometría de Masas en Tándem
19.
Fish Shellfish Immunol ; 99: 227-238, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31988016

RESUMEN

Neutrophils release nuclear chromatin decorated with antimicrobial proteins into the extracellular milieu as an innate immune defence mechanism to counter invading microbes. These chromatin structures, called extracellular traps (ETs) and released by a process called NETosis, have been detected in mammals, certain invertebrates and some fish species, including fathead minnow, zebrafish, common carp, turbot, sole and barramundi. However, there have been no previous studies of ETs in the Salmonidae. ETs are released in response to chemical and biological stimuli, but observations from different fish species are inconsistent, particularly regarding the potency of various inducers and inhibitors. Thus, this present study aimed to describe ET release in a salmonid (rainbow trout, Oncorhynchus mykiss (Walbaum, 1792)) and uncover the inducers and inhibitors that can control this response. Highly enriched suspensions of polymorphonuclear cells (PMNs; mainly neutrophils) were prepared from head kidney tissues by a triple-layer Percoll gradient technique. ET structures were visualised in PMN-enriched suspensions through staining of the chromatin with nucleic acid-specific dyes and immunocytochemical probing of characteristic proteins expected to decorate the structure. ET release was quantified after incubation with inducers and inhibitors known to affect this response in other organisms. Structures resembling ETs stained positively with SYTOX Green (a stain specific for nucleic acid) while immunocytochemistry was used to detect neutrophil elastase, myeloperoxidase and H2A histone in the structures, which are diagnostic proteinaceous markers of ETs. Consistent with other studies on mammals and some fish species, calcium ionophore and flagellin were potent inducers of ETs, while cytochalasin D inhibited NETosis. Phorbol 12-myristate 13-acetate (PMA), used commonly to induce ETs, exerted only weak stimulatory activity, while heat-killed bacteria and lipopolysaccharide did not induce ET release. Unexpectedly, the ET-inhibitor diphenyleneiodonium chloride acted as an inducer of ET release, an observation not reported elsewhere. Taken together, these data confirm for the first time that ETs are released by salmonid PMNs and compounds useful for manipulating NETosis were identified, thus providing a platform for further studies to explore the role of this mechanism in fish immunity. This new knowledge provides a foundation for translation to farm settings, since manipulation of the innate immune response offers a potential alternative to the use of antibiotics to mitigate against microbial infections, particularly for pathogens where protection by vaccination has yet to be realised.


Asunto(s)
Cromatina , Trampas Extracelulares/fisiología , Riñón Cefálico/fisiología , Inmunidad Innata , Neutrófilos/fisiología , Oncorhynchus mykiss/inmunología , Animales , Ionóforos de Calcio , Flagelina , Vibrio , Vibriosis/inmunología , Vibriosis/microbiología , Vibriosis/veterinaria
20.
G3 (Bethesda) ; 10(2): 581-590, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31826882

RESUMEN

Genomic selection enables cumulative genetic gains in key production traits such as disease resistance, playing an important role in the economic and environmental sustainability of aquaculture production. However, it requires genome-wide genetic marker data on large populations, which can be prohibitively expensive. Genotype imputation is a cost-effective method for obtaining high-density genotypes, but its value in aquaculture breeding programs which are characterized by large full-sibling families has yet to be fully assessed. The aim of this study was to optimize the use of low-density genotypes and evaluate genotype imputation strategies for cost-effective genomic prediction. Phenotypes and genotypes (78,362 SNPs) were obtained for 610 individuals from a Scottish Atlantic salmon breeding program population (Landcatch, UK) challenged with sea lice, Lepeophtheirus salmonis The genomic prediction accuracy of genomic selection was calculated using GBLUP approaches and compared across SNP panels of varying densities and composition, with and without imputation. Imputation was tested when parents were genotyped for the optimal SNP panel, and offspring were genotyped for a range of lower density imputation panels. Reducing SNP density had little impact on prediction accuracy until 5,000 SNPs, below which the accuracy dropped. Imputation accuracy increased with increasing imputation panel density. Genomic prediction accuracy when offspring were genotyped for just 200 SNPs, and parents for 5,000 SNPs, was 0.53. This accuracy was similar to the full high density and optimal density dataset, and markedly higher than using 200 SNPs without imputation. These results suggest that imputation from very low to medium density can be a cost-effective tool for genomic selection in Atlantic salmon breeding programs.


Asunto(s)
Marcadores Genéticos , Genómica , Genotipo , Técnicas de Genotipaje , Salmo salar/clasificación , Salmo salar/genética , Selección Genética , Algoritmos , Animales , Pruebas Genéticas , Estudio de Asociación del Genoma Completo , Genómica/economía , Genómica/métodos , Técnicas de Genotipaje/economía , Modelos Genéticos , Fenotipo , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...