Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmacol Rep ; 75(2): 397-410, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36918494

RESUMEN

BACKGROUND: Impaired muscle regeneration is a hallmark of Duchenne muscular dystrophy (DMD), a neuromuscular disorder caused by mutations in the DMD gene encoding dystrophin. The lack of heme oxygenase-1 (HO-1, Hmox1), a known anti-inflammatory and cytoprotective enzyme, was shown to aggravate DMD pathology. METHODS: We evaluated the role of HO-1 overexpression in human induced pluripotent stem cell (hiPSC)-derived skeletal muscle cells (hiPSC-SkM) in vitro and in the regeneration process in vivo in wild-type mice. Furthermore, the effect of cobalt protoporphyrin IX (CoPP), a pharmacological inducer of HO-1 expression, on regeneration markers during myogenic hiPSC differentiation and progression of the dystrophic phenotype was analysed in the mdx mouse DMD model. RESULTS: HO-1 has an impact on hiPSC-SkM generation by decreasing cell fusion capacity and the expression of myogenic regulatory factors and muscle-specific microRNAs (myomiRs). Also, strong induction of HO-1 by CoPP totally abolished hiPSC-SkM differentiation. Injection of HO-1-overexpressing hiPSC-SkM into the cardiotoxin (CTX)-injured muscle of immunodeficient wild-type mice was associated with decreased expression of miR-206 and Myh3 and lower number of regenerating fibers, suggesting some advanced regeneration. However, the very potent induction of HO-1 by CoPP did not exert any protective effect on necrosis, leukocyte infiltration, fibrosis, myofiber regeneration biomarkers, and exercise capacity of mdx mice. CONCLUSIONS: In summary, HO-1 inhibits the expression of differentiation markers in human iPSC-derived myoblasts. Although moderate overexpression of HO-1 in the injected myoblast was associated with partially advanced muscle regeneration, the high systemic induction of HO-1 did not improve muscle regeneration. The appropriate threshold of HO-1 expression must be established for the therapeutic effect of HO-1 on muscle regeneration.


Asunto(s)
Células Madre Pluripotentes Inducidas , MicroARNs , Humanos , Ratones , Animales , Ratones Endogámicos mdx , Hemo-Oxigenasa 1/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Diferenciación Celular , Modelos Animales de Enfermedad , Regeneración , MicroARNs/metabolismo
2.
Neoplasia ; 36: 100865, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36563633

RESUMEN

Slow-cycling cancer cells (SCC) contribute to the aggressiveness of many cancers, and their invasiveness and chemoresistance pose a great therapeutic challenge. However, in melanoma, their tumor-initiating abilities are not fully understood. In this study, we used the syngeneic transplantation assay to investigate the tumor-initiating properties of melanoma SCC in the physiologically relevant in vivo settings. For this we used B16-F10 murine melanoma cell line where we identified a small fraction of SCC. We found that, unlike human melanoma, the murine melanoma SCC were not marked by the high expression of the epigenetic enzyme Jarid1b. At the same time, their slow-cycling phenotype was a temporary state, similar to what was described in human melanoma. Progeny of SCC had slightly increased doxorubicin resistance and altered expression of melanogenesis genes, independent of the expression of cancer stem cell markers. Single-cell expansion of SCC revealed delayed growth and reduced clone formation when compared to non-SCC, which was further confirmed by an in vitro limiting dilution assay. Finally, syngeneic transplantation of 10 cells in vivo established that SCC were able to initiate growth in primary recipients and continue growth in the serial transplantation assay, suggesting their self-renewal nature. Together, our study highlights the high plasticity and tumorigenicity of murine melanoma SCC and suggests their role in melanoma aggressiveness.


Asunto(s)
Melanoma Experimental , Humanos , Animales , Ratones , Trasplante Isogénico , Melanoma Experimental/genética , Melanoma Experimental/tratamiento farmacológico , Línea Celular , Proliferación Celular
3.
Cells ; 11(20)2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36291188

RESUMEN

Increased oxidative stress can slow down the regeneration of skeletal muscle and affect the activity of muscle satellite cells (mSCs). Therefore, we evaluated the role of the NRF2 transcription factor (encoded by the Nfe2l2 gene), the main regulator of the antioxidant response, in muscle cell biology. We used (i) an immortalized murine myoblast cell line (C2C12) with stable overexpression of NRF2 and (ii) primary mSCs isolated from wild-type and Nfe2l2 (transcriptionally)-deficient mice (Nfe2l2tKO). NRF2 promoted myoblast proliferation and viability under oxidative stress conditions and decreased the production of reactive oxygen species. Furthermore, NRF2 overexpression inhibited C2C12 cell differentiation by down-regulating the expression of myogenic regulatory factors (MRFs) and muscle-specific microRNAs. We also showed that NRF2 is indispensable for the viability of mSCs since the lack of its transcriptional activity caused high mortality of cells cultured in vitro under normoxic conditions. Concomitantly, Nfe2l2tKO mSCs grown and differentiated under hypoxic conditions were viable and much more differentiated compared to cells isolated from wild-type mice. Taken together, NRF2 significantly influences the properties of myoblasts and muscle satellite cells. This effect might be modulated by the muscle microenvironment.


Asunto(s)
MicroARNs , Células Satélite del Músculo Esquelético , Ratones , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/metabolismo , Diferenciación Celular/genética , Músculo Esquelético/metabolismo , Estrés Oxidativo , Proliferación Celular , Factores Reguladores Miogénicos/metabolismo , MicroARNs/metabolismo
4.
Acta Neuropathol Commun ; 10(1): 60, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35468843

RESUMEN

Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disorder caused by mutations in the Dystrophin gene and for which there is currently no cure. To bridge the gap between preclinical and therapeutic evaluation studies, we have generated a rat model for DMD that carries an exon 52 deletion (R-DMDdel52) causing a complete lack of dystrophin protein. Here we show that R-DMDdel52 animals recapitulated human DMD pathophysiological trajectory more faithfully than the mdx mouse model. We report that R-DMDdel52 rats displayed progressive and severe skeletal muscle loss associated with fibrotic deposition, fat infiltration and fibre type switch. Early fibrosis was also apparent in the cardiac muscle. These histological modifications led to severe muscle, respiratory and cardiac functional impairments leading to premature death around 1 year. Moreover, DMD muscle exhibited systemic inflammation with a mixed M1/M2 phenotype. A comparative single cell RNAseq analysis of the diaphragm muscle was performed, revealing cellular populations alteration and molecular modifications in all muscle cell types. We show that DMD fibroadipogenic progenitors produced elevated levels of cartilage oligomeric matrix protein, a glycoprotein responsible for modulating homeostasis of extracellular matrix, and whose increased concentration correlated with muscle fibrosis both in R-DMDdel52 rats and human patients. Fibrosis is a component of tissue remodelling impacting the whole musculature of DMD patients, at the tissue level but most importantly at the functional level. We therefore propose that this specific biomarker can optimize the prognostic monitoring of functional improvement of patients included in clinical trials.


Asunto(s)
Distrofia Muscular de Duchenne , Animales , Biomarcadores , Proteína de la Matriz Oligomérica del Cartílago/uso terapéutico , Distrofina/metabolismo , Fibrosis , Humanos , Ratones , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/terapia , Ratas
5.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35408953

RESUMEN

Melanoma-initiating cells (MICs) contribute to the tumorigenicity and heterogeneity of melanoma. MICs are identified by surface and functional markers and have been shown to display cancer stem cell (CSC) properties. However, the existence of MICs that follow the hierarchical CSC model has been questioned by studies showing that single unselected melanoma cells are highly tumorigenic in xenotransplantation assays. Herein, we characterize cells expressing MIC markers (CD20, CD24, CD133, Sca-1, ABCB1, ABCB5, ALDHhigh) in the B16-F10 murine melanoma cell line. We use flow cytometric phenotyping, single-cell sorting followed by in vitro clonogenic assays, and syngeneic in vivo serial transplantation assays to demonstrate that the expression of MIC markers does not select CSC-like cells in this cell line. Previously, our group showed that heme-degrading enzyme heme oxygenase-1 (HO-1) can be upregulated in melanoma and increase its aggressiveness. Here, we show that HO-1 activity is important for non-adherent growth of melanoma and HO-1 overexpression enhances the vasculogenic mimicry potential, which can be considered protumorigenic activity. However, HO-1 overexpression decreases clone formation in vitro and serial tumor initiation in vivo. Thus, HO-1 plays a dual role in melanoma, improving the progression of growing tumors but reducing the risk of melanoma initiation.


Asunto(s)
Hemo-Oxigenasa 1 , Melanoma Experimental , Animales , Línea Celular Tumoral , Separación Celular , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Melanoma Experimental/patología , Proteínas de la Membrana , Ratones , Células Madre Neoplásicas/metabolismo
6.
Biomedicines ; 9(5)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925757

RESUMEN

Duchenne muscular dystrophy (DMD), caused by a lack of functional dystrophin, is characterized by progressive muscle degeneration. Interestingly, dystrophin is also expressed in endothelial cells (ECs), and insufficient angiogenesis has already been hypothesized to contribute to DMD pathology, however, its status in mdx mice, a model of DMD, is still not fully clear. Our study aimed to reveal angiogenesis-related alterations in skeletal muscles of mdx mice compared to wild-type (WT) counterparts. By investigating 6- and 12-week-old mice, we sought to verify if those changes are age-dependent. We utilized a broad spectrum of methods ranging from gene expression analysis, flow cytometry, and immunofluorescence imaging to determine the level of angiogenic markers and to assess muscle blood vessel abundance. Finally, we implemented the hindlimb ischemia (HLI) model, more biologically relevant in the context of functional studies evaluating angiogenesis/arteriogenesis processes. We demonstrated that both 6- and 12-week-old dystrophic mice exhibited dysregulation of several angiogenic factors, including decreased vascular endothelial growth factor A (VEGF) in different muscle types. Nonetheless, in younger, 6-week-old mdx animals, neither the abundance of CD31+α-SMA+ double-positive blood vessels nor basal blood flow and its restoration after HLI was affected. In 12-week-old mdx mice, although a higher number of CD31+α-SMA+ double-positive blood vessels and an increased percentage of skeletal muscle ECs were found, the abundance of pericytes was diminished, and blood flow was reduced. Moreover, impeded perfusion recovery after HLI associated with a blunted inflammatory and regenerative response was evident in 12-week-old dystrophic mice. Hence, our results reinforce the hypothesis of age-dependent angiogenic dysfunction in dystrophic mice. In conclusion, we suggest that older mdx mice constitute an appropriate model for preclinical studies evaluating the effectiveness of vascular-based therapies aimed at the restoration of functional angiogenesis to mitigate DMD severity.

7.
Skelet Muscle ; 10(1): 35, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33287890

RESUMEN

The nuclear factor erythroid 2-related factor 2 (Nrf2) is considered as a master cytoprotective factor regulating the expression of genes encoding anti-oxidant, anti-inflammatory, and detoxifying proteins. The role of Nrf2 in the pathophysiology of skeletal muscles has been evaluated in different experimental models, however, due to inconsistent data, we aimed to investigate how Nrf2 transcriptional deficiency (Nrf2tKO) affects muscle functions both in an acute and chronic injury. The acute muscle damage was induced in mice of two genotypes-WT and Nrf2tKO mice by cardiotoxin (CTX) injection. To investigate the role of Nrf2 in chronic muscle pathology, mdx mice that share genetic, biochemical, and histopathological features with Duchenne muscular dystrophy (DMD) were crossed with mice lacking transcriptionally active Nrf2 and double knockouts (mdx/Nrf2tKO) were generated. To worsen the dystrophic phenotype, the analysis of disease pathology was also performed in aggravated conditions, by applying a long-term treadmill test. We have observed slightly increased muscle damage in Nrf2tKO mice after CTX injection. Nevertheless, transcriptional ablation of Nrf2 in mdx mice did not significantly aggravate the most deleterious, pathological hallmarks of DMD related to degeneration, inflammation, fibrotic scar formation, angiogenesis, and the number and proliferation of satellite cells in non-exercised conditions. On the other hand, upon chronic exercises, the degeneration and inflammatory infiltration of the gastrocnemius muscle, but not the diaphragm, turned to be increased in Nrf2tKOmdx in comparison to mdx mice. In conclusion, the lack of transcriptionally active Nrf2 influences moderately muscle pathology in acute CTX-induced muscle injury and chronic DMD mouse model, without affecting muscle functionality. Hence, in general, we demonstrated that the deficiency of Nrf2 transcriptional activity has no profound impact on muscle pathology in various models of muscle injury.


Asunto(s)
Distrofias Musculares/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Cardiotoxinas/toxicidad , Distrofina/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Distrofias Musculares/etiología , Distrofias Musculares/genética , Factor 2 Relacionado con NF-E2/genética , Carrera
8.
JCI Insight ; 5(11)2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32493839

RESUMEN

The severity of Duchenne muscular dystrophy (DMD), an incurable disease caused by the lack of dystrophin, might be modulated by different factors, including miRNAs. Among them, miR-378 is considered of high importance for muscle biology, but intriguingly, its role in DMD and its murine model (mdx mice) has not been thoroughly addressed so far. Here, we demonstrate that dystrophic mice additionally globally lacking miR-378 (double-KO [dKO] animals) exhibited better physical performance and improved absolute muscle force compared with mdx mice. Accordingly, markers of muscle damage in serum were significantly decreased in dKO mice, accompanied by diminished inflammation, fibrosis, and reduced abundance of regenerating fibers within muscles. The lack of miR-378 also normalized the aggravated fusion of dystrophin-deficient muscle satellite cells (mSCs). RNA sequencing of gastrocnemius muscle transcriptome revealed fibroblast growth factor 1 (Fgf1) as one of the most significantly downregulated genes in mice devoid of miR-378, indicating FGF1 as one of the mediators of changes driven by the lack of miR-378. In conclusion, we suggest that targeting miR-378 has the potential to ameliorate DMD pathology.


Asunto(s)
MicroARNs/genética , Músculo Esquelético , Distrofia Muscular de Duchenne , Células Satélite del Músculo Esquelético , Animales , Regulación hacia Abajo , Factor 1 de Crecimiento de Fibroblastos/biosíntesis , Factor 1 de Crecimiento de Fibroblastos/genética , Ratones , Ratones Endogámicos mdx , Ratones Noqueados , MicroARNs/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/patología
9.
Skelet Muscle ; 9(1): 22, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31412923

RESUMEN

Duchenne muscular dystrophy (DMD) is a genetic disease evoked by a mutation in the dystrophin gene. It is associated with progressive muscle degeneration and increased inflammation. Up to this date, mainly anti-inflammatory treatment is available for patients suffering from DMD. miR-146a is known to diminish inflammation and fibrosis in different tissues by downregulating the expression of proinflammatory cytokines. However, its role in DMD has not been studied so far.In our work, we have generated mice globally lacking both dystrophin and miR-146a (miR-146a-/-mdx) and examined them together with wild-type, single miR-146a knockout and dystrophic (mdx-lacking dystrophin) mice in a variety of aspects associated with DMD pathophysiology (muscle degeneration, inflammatory reaction, muscle satellite cells, muscle regeneration, and fibrosis).We have shown that miR-146a level is increased in dystrophic muscles in comparison to wild-type mice. Its deficiency augments the expression of proinflammatory cytokines (IL-1ß, CCL2, TNFα). However, muscle degeneration was not significantly worsened in mdx mice lacking miR-146a up to 24 weeks of age, although some aggravation of muscle damage and inflammation was evident in 12-week-old animals, though no effect of miR-146a deficiency was visible on quantity, proliferation, and in vitro differentiation of muscle satellite cells isolated from miR-146a-/-mdx mice vs. mdx. Similarly, muscle regeneration and collagen deposition were not changed by miR-146a deficiency. Nevertheless, the lack of miR-146a is associated with decreased Vegfa and increased Tgfb1.Overall, the lack of miR-146a did not aggravate significantly the dystrophic conditions in mdx mice, but its effect on DMD in more severe conditions warrants further investigation.


Asunto(s)
MicroARNs/genética , MicroARNs/metabolismo , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Colágeno/metabolismo , Progresión de la Enfermedad , Distrofina/deficiencia , Distrofina/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Noqueados , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/patología , Factor de Crecimiento Transformador beta1/genética , Regulación hacia Arriba
10.
Antioxid Redox Signal ; 29(2): 128-148, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29669436

RESUMEN

AIMS: Muscle damage in Duchenne muscular dystrophy (DMD) caused by the lack of dystrophin is strongly linked to inflammation. Heme oxygenase-1 (HO-1; Hmox1) is an anti-inflammatory and cytoprotective enzyme affecting myoblast differentiation by inhibiting myomiRs. The role of HO-1 has not been so far well addressed in DMD. RESULTS: In dystrophin-deficient mdx mice, expression of Hmox1 in limb skeletal muscles and diaphragm is higher than in wild-type animals, being consistently elevated from 8 up to 52 weeks, both in myofibers and inflammatory leukocytes. Accordingly, HO-1 expression is induced in muscles of DMD patients. Pharmacological inhibition of HO-1 activity or genetic ablation of Hmox1 aggravates muscle damage and inflammation in mdx mice. Double knockout animals (Hmox1-/-mdx) demonstrate impaired exercise capacity in comparison with mdx mice. Interestingly, in contrast to the effect observed in muscle fibers, in dystrophin-deficient muscle satellite cells (SCs) expression of Hmox1 is decreased, while MyoD, myogenin, and miR-206 are upregulated compared with wild-type counterparts. Mdx SCs demonstrate disturbed and enhanced differentiation, which is further intensified by Hmox1 deficiency. RNA sequencing revealed downregulation of Atf3, MafK, Foxo1, and Klf2 transcription factors, known to activate Hmox1 expression, as well as attenuation of nitric oxide-mediated cGMP-dependent signaling in mdx SCs. Accordingly, treatment with NO-donor induces Hmox1 expression and inhibits differentiation. Finally, differentiation of mdx SCs was normalized by CO, a product of HO-1 activity. Innovation and Conclusions: HO-1 is induced in DMD, and HO-1 inhibition aggravates DMD pathology. Therefore, HO-1 can be considered a therapeutic target to alleviate this disease. Antioxid. Redox Signal. 00, 000-000.


Asunto(s)
Hemo-Oxigenasa 1/metabolismo , Proteínas de la Membrana/metabolismo , Distrofia Muscular de Duchenne/enzimología , Células Satélite del Músculo Esquelético/enzimología , Animales , Diferenciación Celular , Células Cultivadas , Niño , Preescolar , Progresión de la Enfermedad , Distrofina/genética , Hemo-Oxigenasa 1/antagonistas & inhibidores , Hemo-Oxigenasa 1/genética , Humanos , Masculino , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Ratones Endogámicos mdx , Ratones Noqueados , MicroARNs/metabolismo , Músculo Esquelético/enzimología , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Fenotipo , Células Satélite del Músculo Esquelético/citología
11.
Am J Pathol ; 188(2): 491-506, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29169990

RESUMEN

Heme oxygenase-1 (HO-1, Hmox1) regulates viability, proliferation, and differentiation of many cell types; hence, it may affect regeneration of injured skeletal muscle. Here, we injected cardiotoxin into gastrocnemius muscle of Hmox1+/+ and Hmox1-/- animals and analyzed cellular response after muscle injury, focusing on muscle satellite cells (SCs), inflammatory reaction, fibrosis, and formation of new blood vessels. HO-1 is strongly induced after muscle injury, being expressed mostly in the infiltrating leukocytes (CD45+ cells), including macrophages (F4/80+ cells). Lack of HO-1 augments skeletal muscle injury, evidenced by increased creatinine kinase and lactate dehydrogenase, as well as expression of monocyte chemoattractant protein-1, IL-6, IL-1ß, and insulin-like growth factor-1. This, together with disturbed proportion of M1/M2 macrophages, accompanied by enhanced formation of arterioles, may be responsible for shift of Hmox1-/- myofiber size distribution toward larger one. Importantly, HO-1-deficient SCs are prone to activation and have higher proliferation on injury. This effect can be partially mimicked by stimulation of Hmox1+/+ SCs with monocyte chemoattractant protein-1, IL-6, IL-1ß, and is associated with increased MyoD expression, suggesting that Hmox1-/- SCs are shifted toward more differentiated myogenic population. However, multiple rounds of degeneration/regeneration in conditions of HO-1 deficiency may lead to exhaustion of SC pool, and the number of SCs is decreased in old Hmox1-/- mice. In summary, HO-1 modulates muscle repair mechanisms preventing its uncontrolled acceleration.


Asunto(s)
Hemo-Oxigenasa 1/fisiología , Músculo Esquelético/lesiones , Miositis/enzimología , Células Satélite del Músculo Esquelético/patología , Animales , Arteriolas/patología , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Proteínas Cardiotóxicas de Elápidos , Crotoxina , Citocinas/biosíntesis , Combinación de Medicamentos , Femenino , Regulación Enzimológica de la Expresión Génica , Hemo-Oxigenasa 1/deficiencia , Hemo-Oxigenasa 1/genética , Mediadores de Inflamación/metabolismo , Ratones Endogámicos C57BL , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Miositis/inducido químicamente , Miositis/patología , Miositis/fisiopatología , ARN Mensajero/genética , Regeneración/fisiología , Células Satélite del Músculo Esquelético/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...