Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 108(4-2): 045001, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37978707

RESUMEN

Acoustic emission (AE) is a powerful experimental method for studying discrete and impulsive events termed avalanches that occur in a wide variety of materials and physical phenomena. A particular challenge is the detection of small-scale avalanches, whose associated acoustic signals are at the noise level of the experimental setup. The conventional detection approach is based on setting a threshold significantly larger than this level, ignoring "false" events with low AE amplitudes that originate from noise. At the same time, this approach overlooks small-scale events that might be true and impedes the investigation of avalanches occurring at the nanoscale, constituting the natural response of many nanoparticles and nanostructured materials. In this work, we develop a data-driven method that allows the detection of small-scale AE events, which is based on two propositions. The first includes a modification of the experimental conditions by setting a lower threshold compared to the conventional threshold, such that an abundance of small-scale events with low amplitudes are considered. Second, instead of analyzing several conventional scalar features (e.g., amplitude, duration, energy), we consider the entire waveform of each AE event and obtain an informative representation using dynamic mode decomposition. We apply the developed method to AE signals measured during the compression of platinum nanoparticles and demonstrate a significant enhancement of the detection range toward small-scale events that are below the conventional threshold.

2.
Materials (Basel) ; 16(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36903204

RESUMEN

Temporal average shapes of crackling noise avalanches, U(t) (U is the detected parameter proportional to the interface velocity), have self-similar behavior, and it is expected that by appropriate normalization, they can be scaled together according to a universal scaling function. There are also universal scaling relations between the avalanche parameters (amplitude, A, energy, E, size (area), S, and duration, T), which in the mean field theory (MFT) have the form E∝A3, S∝A2, S∝T2. Recently, it turned out that normalizing the theoretically predicted average U(t) function at a fixed size, U(t)=atexp-bt2 (a and b are non-universal, material-dependent constants) by A and the rising time, R, a universal function can be obtained for acoustic emission (AE) avalanches emitted during interface motions in martensitic transformations, using the relation R~A1-φ too, where φ is a mechanism-dependent constant. It was shown that φ also appears in the scaling relations E~A3-φ and S~A2-φ, in accordance with the enigma for AE, that the above exponents are close to 2 and 1, respectively (in the MFT limit, i.e., with φ= 0, they are 3 and 2, respectively). In this paper, we analyze these properties for acoustic emission measurements carried out during the jerky motion of a single twin boundary in a Ni50Mn28.5Ga21.5 single crystal during slow compression. We show that calculating from the above-mentioned relations and normalizing the time axis of the average avalanche shapes with A1-φ, and the voltage axis with A, the averaged avalanche shapes for the fixed area are well scaled together for different size ranges. These have similar universal shapes as those obtained for the intermittent motion of austenite/martensite interfaces in two different shape memory alloys. The averaged shapes for a fixed duration, although they could be acceptably scaled together, showed a strong positive asymmetry (the avalanches decelerate much slower than they accelerate) and thus did not show a shape reminiscent of an inverted parabola, predicted by the MFT. For comparison, the above scaling exponents were also calculated from simultaneously measured magnetic emission data. It was obtained that the φ values are in accordance with theoretical predictions going beyond the MFT, but the AE results for φ are characteristically different from these, supporting that the well-known enigma for AE is related to this deviation.

3.
Chaos ; 32(12): 123127, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36587352

RESUMEN

Dynamic mode decomposition (DMD) is a leading tool for equation-free analysis of high-dimensional dynamical systems from observations. In this work, we focus on a combination of DMD and delay-coordinates embedding, which is termed delay-coordinates DMD and is based on augmenting observations from current and past time steps, accommodating the analysis of a broad family of observations. An important utility of DMD is the compact and reduced-order spectral representation of observations in terms of the DMD eigenvalues and modes, where the temporal information is separated from the spatial information. From a spatiotemporal viewpoint, we show that when DMD is applied to delay-coordinates embedding, temporal information is intertwined with spatial information, inducing a particular spectral structure on the DMD components. We formulate and analyze this structure, which we term the spatiotemporal coupling in delay-coordinates DMD. Based on this spatiotemporal coupling, we propose a new method for DMD components selection. When using delay-coordinates DMD that comprises redundant modes, this selection is an essential step for obtaining a compact and reduced-order representation of the observations. We demonstrate our method on noisy simulated signals and various dynamical systems and show superior component selection compared to a commonly used method that relies on the amplitudes of the modes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA