Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Plants ; 7(6): 800-813, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34135484

RESUMEN

The vegetative-to-floral transition is a dramatic developmental change of the shoot apical meristem, promoted by the systemic florigen signal. However, poor molecular temporal resolution of this dynamic process has precluded characterization of how meristems respond to florigen induction. Here, we develop a technology that allows sensitive transcriptional profiling of individual shoot apical meristems. Computational ordering of hundreds of tomato samples reconstructed the floral transition process at fine temporal resolution and uncovered novel short-lived gene expression programs that are activated before flowering. These programs are annulled only when both florigen and a parallel signalling pathway are eliminated. Functional screening identified genes acting at the onset of pre-flowering programs that are involved in the regulation of meristem morphogenetic changes but dispensable for the timing of floral transition. Induced expression of these short-lived transition-state genes allowed us to determine their genetic hierarchies and to bypass the need for the main flowering pathways. Our findings illuminate how systemic and autonomous pathways are integrated to control a critical developmental switch.


Asunto(s)
Flores/genética , Perfilación de la Expresión Génica/métodos , Meristema/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Simulación por Computador , Florigena/metabolismo , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/citología , Solanum lycopersicum/crecimiento & desarrollo , Meristema/citología , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Microscopía Electrónica de Rastreo , Mutación , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente
2.
Hum Mol Genet ; 29(6): 967-979, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32011687

RESUMEN

Inherited retinal degenerations (IRDs) are at the focus of current genetic therapeutic advancements. For a genetic treatment such as gene therapy to be successful, an accurate genetic diagnostic is required. Genetic diagnostics relies on the assessment of the probability that a given DNA variant is pathogenic. Non-coding variants present a unique challenge for such assessments as compared to coding variants. For one, non-coding variants are present at much higher number in the genome than coding variants. In addition, our understanding of the rules that govern the non-coding regions of the genome is less complete than our understanding of the coding regions. Methods that allow for both the identification of candidate non-coding pathogenic variants and their functional validation may help overcome these caveats allowing for a greater number of patients to benefit from advancements in genetic therapeutics. We present here an unbiased approach combining whole genome sequencing (WGS) with patient-induced pluripotent stem cell (iPSC)-derived retinal organoids (ROs) transcriptome analysis. With this approach, we identified and functionally validated a novel pathogenic non-coding variant in a small family with a previously unresolved genetic diagnosis.


Asunto(s)
Marcadores Genéticos , Variación Genética , Genoma Humano , RNA-Seq/métodos , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Secuenciación Completa del Genoma/métodos , Niño , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Linaje , Secuenciación del Exoma
3.
Mol Ther Methods Clin Dev ; 15: 392-402, 2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-31890732

RESUMEN

Retinitis pigmentosa (RP) is the most common form of inherited vision loss and is characterized by degeneration of retinal photoreceptor cells and the retinal pigment epithelium (RPE). Mutations in pre-mRNA processing factor 31 (PRPF31) cause dominant RP via haploinsufficiency with incomplete penetrance. There is good evidence that the diverse severity of this disease is a result of differing levels of expression of the wild-type allele among patients. Thus, we hypothesize that PRPF31-related RP will be amenable to treatment by adeno-associated virus (AAV)-mediated gene augmentation therapy. To test this hypothesis, we used induced pluripotent stem cells (iPSCs) with mutations in PRPF31 and differentiated them into RPE cells. The mutant PRPF31 iPSC-RPE cells recapitulate the cellular phenotype associated with the PRPF31 pathology, including defective cell structure, diminished phagocytic function, defects in ciliogenesis, and compromised barrier function. Treatment of the mutant PRPF31 iPSC-RPE cells with AAV-PRPF31 restored normal phagocytosis and cilia formation, and it partially restored structure and barrier function. These results suggest that AAV-based gene therapy targeting RPE cells holds therapeutic promise for patients with PRPF31-related RP.

4.
Nat Commun ; 9(1): 4234, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30315276

RESUMEN

Mutations in pre-mRNA processing factors (PRPFs) cause autosomal-dominant retinitis pigmentosa (RP), but it is unclear why mutations in ubiquitously expressed genes cause non-syndromic retinal disease. Here, we generate transcriptome profiles from RP11 (PRPF31-mutated) patient-derived retinal organoids and retinal pigment epithelium (RPE), as well as Prpf31+/- mouse tissues, which revealed that disrupted alternative splicing occurred for specific splicing programmes. Mis-splicing of genes encoding pre-mRNA splicing proteins was limited to patient-specific retinal cells and Prpf31+/- mouse retinae and RPE. Mis-splicing of genes implicated in ciliogenesis and cellular adhesion was associated with severe RPE defects that include disrupted apical - basal polarity, reduced trans-epithelial resistance and phagocytic capacity, and decreased cilia length and incidence. Disrupted cilia morphology also occurred in patient-derived photoreceptors, associated with progressive degeneration and cellular stress. In situ gene editing of a pathogenic mutation rescued protein expression and key cellular phenotypes in RPE and photoreceptors, providing proof of concept for future therapeutic strategies.


Asunto(s)
Proteínas del Ojo/metabolismo , Retinitis Pigmentosa/etiología , Retinitis Pigmentosa/metabolismo , Empalme Alternativo/genética , Empalme Alternativo/fisiología , Animales , Adhesión Celular/genética , Adhesión Celular/fisiología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Cilios/genética , Cilios/metabolismo , Cilios/fisiología , Proteínas del Ojo/genética , Citometría de Flujo , Humanos , Inmunohistoquímica , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Mutación/genética , Organoides/citología , Organoides/metabolismo , Empalme del ARN/genética , Empalme del ARN/fisiología , Retina/citología , Retina/metabolismo , Retinitis Pigmentosa/genética
5.
Fly (Austin) ; 5(3): 200-5, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21406967

RESUMEN

Transcription is the first step through which the cell operates, via its repertoire of transcription complexes, to direct cellular functions and cellular identity by generating the cell-specific transcriptome. The modularity of the composition of constituents of these complexes allows the cell to delicately regulate its transcriptome. In a recent study we have examined the effects of reducing the levels of specific transcription co-factors on the function of two competing transcription complexes, namely CHIP-AP and CHIP-PNR which regulate development of cells in the thorax of Drosophila. We found that changing the availability of these co-factors can shift the balance between these complexes leading to transition from utilization of CHIP-AP to CHIP-PNR. This is reflected in change in the expression profile of target genes, altering developmental cell fates. We propose that such a mechanism may operate in normal fly development. Transcription complexes analogous to CHIP-AP and CHIP-PNR exist in mammals and we discuss how such a shift in the balance between them may operate in normal mammalian development.


Asunto(s)
Diferenciación Celular , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Drosophila/citología , Proteínas de Homeodominio/metabolismo
6.
PLoS Genet ; 6(8): e1001063, 2010 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-20730086

RESUMEN

It is increasingly clear that transcription factors play versatile roles in turning genes "on" or "off" depending on cellular context via the various transcription complexes they form. This poses a major challenge in unraveling combinatorial transcription complex codes. Here we use the powerful genetics of Drosophila combined with microarray and bioinformatics analyses to tackle this challenge. The nuclear adaptor CHIP/LDB is a major developmental regulator capable of forming tissue-specific transcription complexes with various types of transcription factors and cofactors, making it a valuable model to study the intricacies of gene regulation. To date only few CHIP/LDB complexes target genes have been identified, and possible tissue-dependent crosstalk between these complexes has not been rigorously explored. SSDP proteins protect CHIP/LDB complexes from proteasome dependent degradation and are rate-limiting cofactors for these complexes. By using mutations in SSDP, we identified 189 down-stream targets of CHIP/LDB and show that these genes are enriched for the binding sites of APTEROUS (AP) and PANNIER (PNR), two well studied transcription factors associated with CHIP/LDB complexes. We performed extensive genetic screens and identified target genes that genetically interact with components of CHIP/LDB complexes in directing the development of the wings (28 genes) and thoracic bristles (23 genes). Moreover, by in vivo RNAi silencing we uncovered novel roles for two of the target genes, xbp1 and Gs-alpha, in early development of these structures. Taken together, our results suggest that loss of SSDP disrupts the normal balance between the CHIP-AP and the CHIP-PNR transcription complexes, resulting in down-regulation of CHIP-AP target genes and the concomitant up-regulation of CHIP-PNR target genes. Understanding the combinatorial nature of transcription complexes as presented here is crucial to the study of transcription regulation of gene batteries required for development.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Regulación de la Expresión Génica , Proteínas Nucleares/metabolismo , Transcripción Genética , Animales , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas con Homeodominio LIM , Proteínas Nucleares/genética , Unión Proteica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...