Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NPJ Genom Med ; 6(1): 82, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34620846

RESUMEN

Despite recent advances in the prevention of cervical cancer, the disease remains a leading cause of cancer-related deaths in women worldwide. By applying the GISTIC2.0 and/or the MutSig2CV algorithms on 430 whole-exome-sequenced cervical carcinomas, we identified previously unreported significantly mutated genes (SMGs) (including MSN, GPX1, SPRED3, FAS, and KRT8), amplifications (including NFIA, GNL1, TGIF1, and WDR87) and deletions (including MIR562, PVRL1, and NTM). Subset analyses of 327 squamous cell carcinomas and 86 non-squamous cell carcinomas revealed previously unreported SMGs in BAP1 and IL28A, respectively. Distinctive copy number alterations related to tumors predominantly enriched for *CpG- and Tp*C mutations were observed. CD274, GRB2, KRAS, and EGFR were uniquely significantly amplified within the Tp*C-enriched tumors. A high frequency of aberrations within DNA damage repair and chromatin remodeling genes were detected. Facilitated by the large sample size derived from combining multiple datasets, this study reveals potential targets and prognostic markers for cervical cancer.

2.
Cancer Med ; 10(2): 709-717, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33369199

RESUMEN

OBJECTIVE: Patients with epithelial ovarian cancer (EOC) typically present with late-stage disease, posing a significant challenge to treatment. Although taxane and platinum-based chemotherapy plus surgical debulking are initially effective, EOC is marked by frequent recurrence with resistant disease. Immunotherapy represents an appealing treatment paradigm given the ability of immune cells to engage metastatic sites and impede recurrence; however, response rates to checkpoint blockade in ovarian cancer have been disappointing. Here, we tested whether class I HDAC inhibition can promote anti-tumor T cell responses in a spontaneous and nonspontaneous murine model of EOC. METHODS: We used the spontaneous Tg-MISIIR-Tag and nonspontaneous ID8 models of murine ovarian cancer to test this hypothesis. Whole tumor transcriptional changes were assessed using the nCounter PanCancer Mouse Immune Profiling Panel. Changes in select protein expression of regulatory and effector T cells were measured by flow cytometry. RESULTS: We found that treatment with the class I HDAC inhibitor entinostat upregulated pathways and genes associated with CD8 T cell cytotoxic function, while downregulating myeloid derived suppressor cell chemoattractants. Suppressive capacity of regulatory T cells within tumors and associated ascites was significantly reduced, reversing the CD8-Treg ratio. CONCLUSIONS: Our findings suggest class I HDAC inhibition can promote activation of intratumoral CD8 T cells, potentially by compromising suppressive networks within the EOC tumor microenvironment. In this manner, class I HDAC inhibition might render advanced-stage EOC susceptible to immunotherapeutic treatment modalities.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Histona Desacetilasa 1/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Neoplasias Ováricas/inmunología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Reguladores/inmunología , Animales , Apoptosis , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/patología , Proliferación Celular , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/enzimología , Neoplasias Ováricas/patología , Linfocitos T Citotóxicos/efectos de los fármacos , Linfocitos T Citotóxicos/patología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Viruses ; 12(6)2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32575696

RESUMEN

Adeno-associated viruses (AAVs) are small, non-pathogenic ssDNA viruses being used as therapeutic gene delivery vectors for the treatment of a variety of monogenic diseases. An obstacle to successful gene delivery is inefficient capsid trafficking through the endo/lysosomal pathway. This study aimed to characterize the AAV capsid stability and dynamics associated with this process for a select number of AAV serotypes, AAV1, AAV2, AAV5, and AAV8, at pHs representative of the early and late endosome, and the lysosome (6.0, 5.5, and 4.0, respectively). All AAV serotypes displayed thermal melt temperatures that varied with pH. The stability of AAV1, AAV2, and AAV8 increased in response to acidic conditions and then decreased at pH 4.0. In contrast, AAV5 demonstrated a consistent decrease in thermostability in response to acidification. Negative-stain EM visualization of liposomes in the presence of capsids at pH 5.5 or when heat shocked showed induced remodeling consistent with the externalization of the PLA2 domain of VP1u. These observations provide clues to the AAV capsid dynamics that facilitate successful infection. Finally, transduction assays revealed a pH and temperature dependence with low acidity and temperatures > 4 °C as detrimental factors.


Asunto(s)
Proteínas de la Cápside/metabolismo , Cápside/metabolismo , Dependovirus/metabolismo , Lisosomas/metabolismo , Transducción Genética , Animales , Transporte Biológico/fisiología , Línea Celular , Frío , Terapia Genética/métodos , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Liposomas/metabolismo , Células Sf9 , Spodoptera
4.
J Virol ; 91(1)2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27795440

RESUMEN

During ϕX174 morphogenesis, 240 copies of the external scaffolding protein D organize 12 pentameric assembly intermediates into procapsids, a reaction reconstituted in vitro In previous studies, ϕX174 strains resistant to exogenously expressed dominant lethal D genes were experimentally evolved. Resistance was achieved by the stepwise acquisition of coat protein mutations. Once resistance was established, a stimulatory D protein mutation that greatly increased strain fitness arose. In this study, in vitro biophysical and biochemical methods were utilized to elucidate the mechanistic details and evolutionary trade-offs created by the resistance mutations. The kinetics of procapsid formation was analyzed in vitro using wild-type, inhibitory, and experimentally evolved coat and scaffolding proteins. Our data suggest that viral fitness is correlated with in vitro assembly kinetics and demonstrate that in vivo experimental evolution can be analyzed within an in vitro biophysical context. IMPORTANCE: Experimental evolution is an extremely valuable tool. Comparisons between ancestral and evolved genotypes suggest hypotheses regarding adaptive mechanisms. However, it is not always possible to rigorously test these hypotheses in vivo We applied in vitro biophysical and biochemical methods to elucidate the mechanistic details that allowed an experimentally evolved virus to become resistant to an antiviral protein and then evolve a productive use for that protein. Moreover, our results indicate that the respective roles of scaffolding and coat proteins may have been redistributed during the evolution of a two-scaffolding-protein system. In one-scaffolding-protein virus assembly systems, coat proteins promiscuously interact to form heterogeneous aberrant structures in the absence of scaffolding proteins. Thus, the scaffolding protein controls fidelity. During ϕX174 assembly, the external scaffolding protein acts like a coat protein, self-associating into large aberrant spherical structures in the absence of coat protein, whereas the coat protein appears to control fidelity.


Asunto(s)
Bacteriófago phi X 174/química , Proteínas de la Cápside/química , Cápside/química , Regulación Viral de la Expresión Génica , Ensamble de Virus , Bacteriófago phi X 174/genética , Bacteriófago phi X 174/metabolismo , Cápside/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Evolución Molecular Dirigida , Genes Letales , Aptitud Genética , Cinética , Modelos Moleculares , Mutación , Dominios Proteicos , Multimerización de Proteína , Estructura Secundaria de Proteína
5.
PLoS One ; 11(1): e0146493, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26735300

RESUMEN

The extrinsic apoptotic pathway is initiated by binding of a Fas ligand to the ectodomain of the surface death receptor Fas protein. Subsequently, the intracellular death domain of Fas (FasDD) and that of the Fas-associated protein (FADD) interact to form the core of the death-inducing signaling complex (DISC), a crucial step for activation of caspases that induce cell death. Previous studies have shown that calmodulin (CaM) is recruited into the DISC in cholangiocarcinoma cells and specifically interacts with FasDD to regulate the apoptotic/survival signaling pathway. Inhibition of CaM activity in DISC stimulates apoptosis significantly. We have recently shown that CaM forms a ternary complex with FasDD (2:1 CaM:FasDD). However, the molecular mechanism by which CaM binds to two distinct FasDD motifs is not fully understood. Here, we employed mass spectrometry, nuclear magnetic resonance (NMR), biophysical, and biochemical methods to identify the binding regions of FasDD and provide a molecular basis for the role of CaM in Fas-mediated apoptosis. Proteolytic digestion and mass spectrometry data revealed that peptides spanning residues 209-239 (Fas-Pep1) and 251-288 (Fas-Pep2) constitute the two CaM-binding regions of FasDD. To determine the molecular mechanism of interaction, we have characterized the binding of recombinant/synthetic Fas-Pep1 and Fas-Pep2 peptides with CaM. Our data show that both peptides engage the N- and C-terminal lobes of CaM simultaneously. Binding of Fas-Pep1 to CaM is entropically driven while that of Fas-Pep2 to CaM is enthalpically driven, indicating that a combination of electrostatic and hydrophobic forces contribute to the stabilization of the FasDD-CaM complex. Our data suggest that because Fas-Pep1 and Fas-Pep2 are involved in extensive intermolecular contacts with the death domain of FADD, binding of CaM to these regions may hinder its ability to bind to FADD, thus greatly inhibiting the initiation of apoptotic signaling pathway.


Asunto(s)
Calmodulina/metabolismo , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Receptor fas/metabolismo , Secuencia de Aminoácidos , Apoptosis , Sitios de Unión , Calmodulina/química , Línea Celular Tumoral , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Dicroismo Circular , Proteína de Dominio de Muerte Asociada a Fas/química , Proteína de Dominio de Muerte Asociada a Fas/genética , Humanos , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Péptidos/análisis , Unión Proteica , Estructura Terciaria de Proteína , Proteolisis , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Transducción de Señal , Espectrometría de Masas en Tándem , Termodinámica , Receptor fas/química
6.
J Biol Chem ; 291(1): 215-26, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26574546

RESUMEN

Bacterial viruses of the P22-like family encode a specialized tail needle essential for genome stabilization after DNA packaging and implicated in Gram-negative cell envelope penetration. The atomic structure of P22 tail needle (gp26) crystallized at acidic pH reveals a slender fiber containing an N-terminal "trimer of hairpins" tip. Although the length and composition of tail needles vary significantly in Podoviridae, unexpectedly, the amino acid sequence of the N-terminal tip is exceptionally conserved in more than 200 genomes of P22-like phages and prophages. In this paper, we used x-ray crystallography and EM to investigate the neutral pH structure of three tail needles from bacteriophage P22, HK620, and Sf6. In all cases, we found that the N-terminal tip is poorly structured, in stark contrast to the compact trimer of hairpins seen in gp26 crystallized at acidic pH. Hydrogen-deuterium exchange mass spectrometry, limited proteolysis, circular dichroism spectroscopy, and gel filtration chromatography revealed that the N-terminal tip is highly dynamic in solution and unlikely to adopt a stable trimeric conformation at physiological pH. This is supported by the cryo-EM reconstruction of P22 mature virion tail, where the density of gp26 N-terminal tip is incompatible with a trimer of hairpins. We propose the tail needle N-terminal tip exists in two conformations: a pre-ejection extended conformation, which seals the portal vertex after genome packaging, and a postejection trimer of hairpins, which forms upon its release from the virion. The conformational plasticity of the tail needle N-terminal tip is built in the amino acid sequence, explaining its extraordinary conservation in nature.


Asunto(s)
Genoma Viral , Podoviridae/genética , Proteínas de la Cola de los Virus/química , Virión/genética , Ensamble de Virus , Bacteriófagos/química , Dicroismo Circular , Microscopía por Crioelectrón , Cristalografía por Rayos X , Medición de Intercambio de Deuterio , Concentración de Iones de Hidrógeno , Espectrometría de Masas , Coloración Negativa , Multimerización de Proteína , Proteínas de la Cola de los Virus/ultraestructura
7.
AIMS Biophys ; 2(3): 336-342, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-35340547

RESUMEN

The use of buffers that mimic biological solutions is a foundation of biochemical and biophysical studies. However, buffering agents have both specific and nonspecific interactions with proteins. Buffer molecules can induce changes in conformational equilibria, dynamic behavior, and catalytic properties merely by their presence in solution. This effect is of concern because many of the standard experiments used to investigate protein structure and function involve changing solution conditions such as pH and/or temperature. In experiments in which pH is varied, it is common practice to switch buffering agents so that the pH is within the working range of the weak acid and conjugate base. If multiple buffers are used, it is not always possible to decouple buffer induced change from pH or temperature induced change. We have developed a series of mixed biological buffers for protein analysis that can be used across a broad pH range, are compatible with biologically relevant metal ions, and avoid complications that may arise from changing the small molecule composition of buffers when pH is used as an experimental variable.

8.
Bio Protoc ; 4(15)2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-27148558

RESUMEN

Differential Scanning Fluorimetry (DSF) is a rapid, economical, and a straightforward technique for estimating the thermal stability of proteins. The principle involves the binding of a fluorescent dye to thermally exposed hydrophobic pockets of a protein. The dyes used in this technique are highly fluorescent in a non-polar environment and are quenched when exposed to aqueous solution. The change in fluorescence can be used to follow unfolding of proteins induced by temperature, pH, or chaotropic agents. The method is well characterized for monomeric proteins. Here, we extend the application to supramolecular protein and nucleo-protein complexes using virus particles as an example. SYPRO-orange™ dye is the dye of choice because it is matched for use with q-PCR instruments and the fluorescence response is stable across a wide range of pH and temperatures. Advantages of this technique over standard biophysical methods include the ability for high-throughput screening of biological and technical replicates and the high sensitivity.

9.
J Virol ; 87(24): 13150-60, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24067976

RESUMEN

Icosahedral viral capsids are obligated to perform a thermodynamic balancing act. Capsids must be stable enough to protect the genome until a suitable host cell is encountered yet be poised to bind receptor, initiate cell entry, navigate the cellular milieu, and release their genome in the appropriate replication compartment. In this study, serotypes of adeno-associated virus (AAV), AAV1, AAV2, AAV5, and AAV8, were compared with respect to the physical properties of their capsids that influence thermodynamic stability. Thermal stability measurements using differential scanning fluorimetry, differential scanning calorimetry, and electron microscopy showed that capsid melting temperatures differed by more than 20°C between the least and most stable serotypes, AAV2 and AAV5, respectively. Limited proteolysis and peptide mass mapping of intact particles were used to investigate capsid protein dynamics. Active hot spots mapped to the region surrounding the 3-fold axis of symmetry for all serotypes. Cleavages also mapped to the unique region of VP1 which contains a phospholipase domain, indicating transient exposure on the surface of the capsid. Data on the biophysical properties of the different AAV serotypes are important for understanding cellular trafficking and is critical to their production, storage, and use for gene therapy. The distinct differences reported here provide direction for future studies on entry and vector production.


Asunto(s)
Cápside/química , Dependovirus/química , Rastreo Diferencial de Calorimetría , Cápside/metabolismo , Cápside/ultraestructura , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Dependovirus/clasificación , Dependovirus/genética , Dependovirus/ultraestructura , Terapia Genética , Vectores Genéticos/química , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Microscopía Electrónica , Estabilidad Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...