Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 27(3): 109157, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38414851

RESUMEN

In the embryonic heart, the activation of the mitochondrial electron transport chain (ETC) coincides with the closure of the cyclophilin D (CypD) regulated mitochondrial permeability transition pore (mPTP). However, it remains to be established whether the absence of CypD has a regulatory effect on mitochondria during cardiac development. Using a variety of assays to analyze cardiac tissue from wildtype and CypD knockout mice from embryonic day (E)9.5 to adult, we found that mitochondrial structure, function, and metabolism show distinct transitions. Deletion of CypD altered the timing of these transitions as the mPTP was closed at all ages, leading to coupled ETC activity in the early embryo, decreased citrate synthase activity, and an altered metabolome particularly after birth. Our results suggest that manipulating CypD activity may control myocyte proliferation and differentiation and could be a tool to increase ATP production and cardiac function in immature hearts.

2.
Redox Biol ; 70: 103047, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38295577

RESUMEN

Ischemic tissues accumulate succinate, which is rapidly oxidized upon reperfusion, driving a burst of mitochondrial reactive oxygen species (ROS) generation that triggers cell death. In isolated mitochondria with succinate as the sole metabolic substrate under non-phosphorylating conditions, 90 % of ROS generation is from reverse electron transfer (RET) at the Q site of respiratory complex I (Cx-I). Together, these observations suggest Cx-I RET is the source of pathologic ROS in reperfusion injury. However, numerous factors present in early reperfusion may impact Cx-I RET, including: (i) High [NADH]; (ii) High [lactate]; (iii) Mildly acidic pH; (iv) Defined ATP/ADP ratios; (v) Presence of the nucleosides adenosine and inosine; and (vi) Defined free [Ca2+]. Herein, experiments with mouse cardiac mitochondria revealed that under simulated early reperfusion conditions including these factors, total mitochondrial ROS generation was only 56 ± 17 % of that seen with succinate alone (mean ± 95 % confidence intervals). Of this ROS, only 52 ± 20 % was assignable to Cx-I RET. A further 14 ± 7 % could be assigned to complex III, with the remainder (34 ± 11 %) likely originating from other ROS sources upstream of the Cx-I Q site. Together, these data suggest the relative contribution of Cx-I RET ROS to reperfusion injury may be overestimated, and other ROS sources may contribute a significant fraction of ROS in early reperfusion.


Asunto(s)
Complejo I de Transporte de Electrón , Daño por Reperfusión , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Electrones , Transporte de Electrón , Mitocondrias Cardíacas/metabolismo , Daño por Reperfusión/metabolismo , Reperfusión , Succinatos
3.
bioRxiv ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-37790458

RESUMEN

The kidneys facilitate energy conservation through reabsorption of nutrients including glucose. Almost all of the filtered blood glucose is reabsorbed by the kidneys. Loss of glucose in urine (glycosuria) is offset by an increase in endogenous glucose production to maintain normal energy supply in the body. How the body senses this glucose loss and consequently enhances glucose production is unclear. Using renal Glut2 knockout mice, we demonstrate that elevated glycosuria activates the hypothalamic-pituitary-adrenal axis, which in turn drives endogenous glucose production. This phenotype was attenuated by selective afferent renal denervation, indicating the involvement of the afferent nerves in promoting the compensatory increase in glucose production. In addition, through plasma proteomics analyses we observed that acute phase proteins - which are usually involved in body's defense mechanisms against a threat - were the top candidates which were either upregulated or downregulated in renal Glut2 KO mice. Overall, afferent renal nerves contribute to promoting endogenous glucose production in response to elevated glycosuria and loss of glucose in urine is sensed as a biological threat in mice. These findings may be useful in improving efficiency of drugs like SGLT2 inhibitors that are intended to treat hyperglycemia by enhancing glycosuria, but are met with a compensatory increase in endogenous glucose production.

4.
bioRxiv ; 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38045326

RESUMEN

Ischemic tissues accumulate succinate, which is rapidly oxidized upon reperfusion, driving a burst of mitochondrial reactive oxygen species (ROS) generation that triggers cell death. In isolated mitochondria with succinate as the sole metabolic substrate under non-phosphorylating conditions, 90% of ROS generation is from reverse electron transfer (RET) at the Q site of respiratory complex I (Cx-I). Together, these observations suggest Cx-I RET is the source of pathologic ROS in reperfusion injury. However, numerous factors present in early reperfusion may impact Cx-I RET, including: (i) High [NADH]; (ii) High [lactate]; (iii) Mildly acidic pH; (iv) Defined ATP/ADP ratios; (v) Presence of the nucleosides adenosine and inosine; and (vi) Defined free [Ca2+]. Herein, experiments with mouse cardiac mitochondria revealed that under simulated early reperfusion conditions including these factors, overall mitochondrial ROS generation was only 56% of that seen with succinate alone, and only 52% of this ROS was assignable to Cx-I RET. The residual non-RET ROS could be partially assigned to complex III (Cx-III) with the remainder likely originating from other ROS sources upstream of the Cx-I Q site. Together, these data suggest the relative contribution of Cx-I RET ROS to reperfusion injury may be overestimated, and other ROS sources may contribute a significant fraction of ROS in early reperfusion.

5.
JACC Basic Transl Sci ; 8(9): 1141-1156, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37791313

RESUMEN

Circadian clocks temporally orchestrate biological processes critical for cellular/organ function. For example, the cardiomyocyte circadian clock modulates cardiac metabolism, signaling, and electrophysiology over the course of the day, such that, disruption of the clock leads to age-onset cardiomyopathy (through unknown mechanisms). Here, we report that genetic disruption of the cardiomyocyte clock results in chronic induction of the transcriptional repressor E4BP4. Importantly, E4BP4 deletion prevents age-onset cardiomyopathy following clock disruption. These studies also indicate that E4BP4 regulates both cardiac metabolism (eg, fatty acid oxidation) and electrophysiology (eg, QT interval). Collectively, these studies reveal that E4BP4 is a novel regulator of both cardiac physiology and pathophysiology.

6.
J Bone Miner Res ; 38(4): 522-540, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36779737

RESUMEN

The mitochondrial permeability transition pore (MPTP) and its positive regulator, cyclophilin D (CypD), play important pathophysiological roles in aging. In bone tissue, higher CypD expression and pore activity are found in aging; however, a causal relationship between CypD/MPTP and bone degeneration needs to be established. We previously reported that CypD expression and MPTP activity are downregulated during osteoblast (OB) differentiation and that manipulations in CypD expression affect OB differentiation and function. Using a newly developed OB-specific CypD/MPTP gain-of-function (GOF) mouse model, we here present evidence that overexpression of a constitutively active K166Q mutant of CypD (caCypD) impairs OB energy metabolism and function, and bone morphological and biomechanical parameters. Specifically, in a spatial-dependent and sex-dependent manner, OB-specific CypD GOF led to a decrease in oxidative phosphorylation (OxPhos) levels, higher oxidative stress, and general metabolic adaptations coincident with the decreased bone organic matrix content in long bones. Interestingly, accelerated bone degeneration was present in vertebral bones regardless of sex. Overall, our work confirms CypD/MPTP overactivation as an important pathophysiological mechanism leading to bone degeneration and fragility in aging. © 2023 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Ratones , Animales , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Necrosis por Permeabilidad de la Transmembrana Mitocondrial , Peptidil-Prolil Isomerasa F , Envejecimiento
7.
J Mol Cell Cardiol ; 174: 101-114, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36481511

RESUMEN

Tissue ischemia results in intracellular pH (pHIN) acidification, and while metabolism is a known driver of acidic pHIN, less is known about how acidic pHIN regulates metabolism. Furthermore, acidic extracellular (pHEX) during early reperfusion confers cardioprotection, but how this impacts metabolism is unclear. Herein we employed LCMS based targeted metabolomics to analyze perfused mouse hearts exposed to: (i) control perfusion, (ii) hypoxia, (iii) ischemia, (iv) enforced acidic pHIN, (v) control reperfusion, and (vi) acidic pHEX (6.8) reperfusion. Surprisingly little overlap was seen between metabolic changes induced by hypoxia, ischemia, and acidic pHIN. Acidic pHIN elevated metabolites in the top half of glycolysis, and enhanced glutathione redox state. Meanwhile, acidic pHEX reperfusion induced substantial metabolic changes in addition to those seen in control reperfusion. This included elevated metabolites in the top half of glycolysis, prevention of purine nucleotide loss, and an enhancement in glutathione redox state. These data led to hypotheses regarding potential roles for methylglyoxal inhibiting the mitochondrial permeability transition pore, and for acidic inhibition of ecto-5'-nucleotidase, as potential mediators of cardioprotection by acidic pHEX reperfusion. However, neither hypothesis was supported by subsequent experiments. In contrast, analysis of cardiac effluents revealed complex effects of pHEX on metabolite transport, suggesting that mildly acidic pHEX may enhance succinate release during reperfusion. Overall, each intervention had distinct and overlapping metabolic effects, suggesting acidic pH is an independent metabolic regulator regardless which side of the cell membrane it is imposed.


Asunto(s)
Isquemia , Metaboloma , Ratones , Animales , Reperfusión , Hipoxia , Concentración de Iones de Hidrógeno
8.
Arthritis Rheumatol ; 75(1): 53-63, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35818333

RESUMEN

OBJECTIVE: The transition from psoriasis to psoriatic arthritis (PsA) occurs in 20-30% of patients; however, the mechanisms underlying the emergence of musculoskeletal disease are not well understood. Metabolic disease is prevalent in psoriasis patients, but whether metabolic factors, other than obesity, increase arthritis risk in psoriasis patients is not known. This study was undertaken to investigate the link between metabolic changes and disease progression in psoriasis patients. METHODS: To characterize the metabolic alterations during the progression of arthritis in psoriasis patients, we analyzed cross-sectional healthy controls and PsA samples and longitudinal psoriasis serum samples, before and after PsA onset. Nontargeted metabolomic profiling was performed using liquid chromatography mass spectrometry. RESULTS: We identified several serum metabolites that differed between PsA patients, psoriasis patients, and healthy controls. Differentially abundant bile acids, purines, pyrimidines, glutathione, lipids, and amino acid metabolites were noted in these 3 groups. We also noted differences between psoriasis patients who progressed and those who did not progress to PsA. Bile acid and butyrate levels were depressed in those who progressed to PsA compared to those who did not, and the level of inflammatory lipid mediators increased following PsA diagnosis. In particular, the combination of leukotriene B4 and glycoursodeoxycholic acid sulfate were sensitive and specific predictors of PsA progression. CONCLUSION: We observed notable differences in bile acid, purine, lipid, and amino acid-derived metabolites, among the healthy controls, psoriasis patients, and PsA patients and identified changes during the transition from psoriasis to PsA. The decreased bile acid and butyrate levels and elevated guanine levels in psoriasis patients at risk for PsA were particularly striking and may reflect gut microbial dysbiosis and dysregulated hepatic metabolism, leading to altered proliferation of immune cells and enhanced cytokine expression.


Asunto(s)
Artritis Psoriásica , Psoriasis , Humanos , Artritis Psoriásica/diagnóstico , Ácidos y Sales Biliares , Nucleótidos , Estudios Transversales , Lípidos , Aminoácidos
9.
J Am Heart Assoc ; 11(13): e026135, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35766275

RESUMEN

Background The metabolite succinate accumulates during cardiac ischemia. Within 5 minutes of reperfusion, succinate returns to baseline levels via both its release from cells and oxidation by mitochondrial complex II. The latter drives reactive oxygen species (ROS) generation and subsequent opening of the mitochondrial permeability transition (PT) pore, leading to cell death. Targeting succinate dynamics (accumulation/oxidation/release) may be therapeutically beneficial in cardiac ischemia-reperfusion (IR) injury. It has been proposed that blocking MCT1 (monocarboxylate transporter 1) may be beneficial in IR injury, by preventing succinate release and subsequent engagement of downstream inflammatory signaling pathways. In contrast, herein we hypothesized that blocking MCT1 would retain succinate in cells, exacerbating ROS generation and IR injury. Methods and Results Using the mitochondrial ROS probe mitoSOX and a custom-built murine heart perfusion rig built into a spectrofluorometer, we measured ROS generation in situ during the first moments of reperfusion. We found that acute MCT1 inhibition enhanced mitochondrial ROS generation at reperfusion and worsened IR injury (recovery of function and infarct size). Both of these effects were abrogated by tandem inhibition of mitochondrial complex II, suggesting that succinate retention worsens IR because it drives more mitochondrial ROS generation. Furthermore, using the PT pore inhibitor cyclosporin A, along with monitoring of PT pore opening via the mitochondrial membrane potential indicator tetramethylrhodamine ethyl ester, we herein provide evidence that ROS generation during early reperfusion is upstream of the PT pore, not downstream as proposed by others. In addition, pore opening was exacerbated by MCT1 inhibition. Conclusions Together, these findings highlight the importance of succinate dynamics and mitochondrial ROS generation as key determinants of PT pore opening and IR injury outcomes.


Asunto(s)
Daño por Reperfusión , Ácido Succínico , Animales , Isquemia/metabolismo , Ratones , Mitocondrias Cardíacas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Especies Reactivas de Oxígeno/metabolismo , Reperfusión , Daño por Reperfusión/metabolismo , Ácido Succínico/metabolismo , Ácido Succínico/farmacología
10.
Redox Biol ; 47: 102132, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34619528

RESUMEN

The incidence of cardiovascular disease (CVD) is higher in cancer survivors than in the general population. Several cancer treatments are recognized as risk factors for CVD, but specific therapies are unavailable. Many cancer treatments activate shared signaling events, which reprogram myeloid cells (MCs) towards persistent senescence-associated secretory phenotype (SASP) and consequently CVD, but the exact mechanisms remain unclear. This study aimed to provide mechanistic insights and potential treatments by investigating how chemo-radiation can induce persistent SASP. We generated ERK5 S496A knock-in mice and determined SASP in myeloid cells (MCs) by evaluating their efferocytotic ability, antioxidation-related molecule expression, telomere length, and inflammatory gene expression. Candidate SASP inducers were identified by high-throughput screening, using the ERK5 transcriptional activity reporter cell system. Various chemotherapy agents and ionizing radiation (IR) up-regulated p90RSK-mediated ERK5 S496 phosphorylation. Doxorubicin and IR caused metabolic changes with nicotinamide adenine dinucleotide depletion and ensuing mitochondrial stunning (reversible mitochondria dysfunction without showing any cell death under ATP depletion) via p90RSK-ERK5 modulation and poly (ADP-ribose) polymerase (PARP) activation, which formed a nucleus-mitochondria positive feedback loop. This feedback loop reprogramed MCs to induce a sustained SASP state, and ultimately primed MCs to be more sensitive to reactive oxygen species. This priming was also detected in circulating monocytes from cancer patients after IR. When PARP activity was transiently inhibited at the time of IR, mitochondrial stunning, priming, macrophage infiltration, and coronary atherosclerosis were all eradicated. The p90RSK-ERK5 module plays a crucial role in SASP-mediated mitochondrial stunning via regulating PARP activation. Our data show for the first time that the nucleus-mitochondria positive feedback loop formed by p90RSK-ERK5 S496 phosphorylation-mediated PARP activation plays a crucial role of persistent SASP state, and also provide preclinical evidence supporting that transient inhibition of PARP activation only at the time of radiation therapy can prevent future CVD in cancer survivors.


Asunto(s)
Enfermedad de la Arteria Coronaria , Proteína Quinasa 7 Activada por Mitógenos , Poli(ADP-Ribosa) Polimerasas , Adenosina Difosfato/metabolismo , Animales , Enfermedad de la Arteria Coronaria/metabolismo , Retroalimentación , Humanos , Ratones , Mitocondrias/metabolismo , Fenotipo , Fosforilación , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Ribosa/metabolismo
11.
Geroscience ; 43(4): 1683-1696, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34132979

RESUMEN

Among several animal groups (eutherian mammals, birds, reptiles), lifespan positively correlates with body mass over several orders of magnitude. Contradicting this pattern are domesticated dogs, with small dog breeds exhibiting significantly longer lifespans than large dog breeds. The underlying mechanisms of differing aging rates across body masses are unclear, but it is generally agreed that metabolism is a significant regulator of the aging process. Herein, we performed a targeted metabolomics analysis on primary fibroblasts isolated from small and large breed young and old dogs. Regardless of size, older dogs exhibited lower glutathione and ATP, consistent with a role for oxidative stress and bioenergetic decline in aging. Furthermore, several size-specific metabolic patterns were observed with aging, including the following: (i) An apparent defect in the lower half of glycolysis in large old dogs at the level of pyruvate kinase. (ii) Increased glutamine anaplerosis into the TCA cycle in large old dogs. (iii) A potential defect in coenzyme A biosynthesis in large old dogs. (iv) Low nucleotide levels in small young dogs that corrected with age. (v) An age-dependent increase in carnitine in small dogs that was absent in large dogs. Overall, these data support the hypothesis that alterations in metabolism may underlie the different lifespans of small vs. large breed dogs, and further work in this area may afford potential therapeutic strategies to improve the lifespan of large dogs.


Asunto(s)
Envejecimiento , Longevidad , Animales , Perros , Fibroblastos , Metabolómica , Estrés Oxidativo
12.
Methods Mol Biol ; 2276: 227-234, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34060045

RESUMEN

In mitochondrial oxidative phosphorylation (Ox-Phos), individual electron transport chain complexes are thought to assemble into supramolecular entities termed supercomplexes (SCs). The technique of blue native (BN) gel electrophoresis has emerged as the method of choice for analyzing SCs. However, the process of sample extraction for BN gel analysis is somewhat tedious and introduces the possibility for experimental artifacts. Here we outline a streamlined method that eliminates a centrifugation step and provides a more representative sampling of a population of mitochondria on the final gel. Using this method, we show that SC composition does not appear to change dynamically with altered mitochondrial function.


Asunto(s)
Proteínas del Complejo de Cadena de Transporte de Electrón/análisis , Corazón/fisiología , Mitocondrias Cardíacas/química , Proteínas Mitocondriales/análisis , Complejos Multiproteicos/análisis , Miocardio/química , Electroforesis en Gel de Poliacrilamida Nativa/métodos , Animales , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Ratones , Mitocondrias Cardíacas/metabolismo , Proteínas Mitocondriales/metabolismo , Complejos Multiproteicos/metabolismo , Miocardio/metabolismo , Fosforilación Oxidativa
13.
JCI Insight ; 6(5)2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33507880

RESUMEN

Preterm birth increases the risk for pulmonary hypertension and heart failure in adulthood. Oxygen therapy can damage the immature cardiopulmonary system and may be partially responsible for the cardiovascular disease in adults born preterm. We previously showed that exposing newborn mice to hyperoxia causes pulmonary hypertension by 1 year of age that is preceded by a poorly understood loss of pulmonary vein cardiomyocyte proliferation. We now show that hyperoxia also reduces cardiomyocyte proliferation and survival in the left atrium and causes diastolic heart failure by disrupting its filling of the left ventricle. Transcriptomic profiling showed that neonatal hyperoxia permanently suppressed fatty acid synthase (Fasn), stearoyl-CoA desaturase 1 (Scd1), and other fatty acid synthesis genes in the atria of mice, the HL-1 line of mouse atrial cardiomyocytes, and left atrial tissue explanted from human infants. Suppressing Fasn or Scd1 reduced HL-1 cell proliferation and increased cell death, while overexpressing these genes maintained their expansion in hyperoxia, suggesting that oxygen directly inhibits atrial cardiomyocyte proliferation and survival by repressing Fasn and Scd1. Pharmacologic interventions that restore Fasn, Scd1, and other fatty acid synthesis genes in atrial cardiomyocytes may, thus, provide a way of ameliorating the adverse effects of supplemental oxygen on preterm infants.


Asunto(s)
Ácido Graso Sintasas/metabolismo , Ácidos Grasos/biosíntesis , Atrios Cardíacos/citología , Miocitos Cardíacos/metabolismo , Oxígeno/efectos adversos , Nacimiento Prematuro , Estearoil-CoA Desaturasa/metabolismo , Animales , Animales Recién Nacidos , Muerte Celular , Proliferación Celular , Modelos Animales de Enfermedad , Ácido Graso Sintasas/antagonistas & inhibidores , Femenino , Atrios Cardíacos/patología , Humanos , Hiperoxia , Recién Nacido , Recien Nacido Prematuro , Lipogénesis , Masculino , Ratones Endogámicos C57BL , Miocitos Cardíacos/patología , Oxígeno/administración & dosificación , Terapia Respiratoria , Estearoil-CoA Desaturasa/antagonistas & inhibidores , Transcriptoma
14.
Autophagy ; 17(11): 3389-3401, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33416042

RESUMEN

Mitochondrial quality control (MQC) balances organelle adaptation and elimination, and mechanistic crosstalk between the underlying molecular processes affects subsequent stress outcomes. FUNDC1 (FUN14 domain containing 1) is a mammalian mitophagy receptor that responds to hypoxia-reoxygenation (HR) stress. Here, we provide evidence that FNDC-1 is the C. elegans ortholog of FUNDC1, and that its loss protects against injury in a worm model of HR. This protection depends upon ATFS-1, a transcription factor that is central to the mitochondrial unfolded protein response (UPRmt). Global mRNA and metabolite profiling suggest that atfs-1-dependent stress responses and metabolic remodeling occur in response to the loss of fndc-1. These data support a role for FNDC-1 in non-hypoxic MQC, and further suggest that these changes are prophylactic in relation to subsequent HR. Our results highlight functional coordination between mitochondrial adaptation and elimination that organizes stress responses and metabolic rewiring to protect against HR injury.Abbreviations: AL: autolysosome; AP: autophagosome; FUNDC1: FUN14 domain containing 1; HR: hypoxia-reperfusion; IR: ischemia-reperfusion; lof: loss of function; MQC: mitochondrial quality control; PCA: principle component analysis; PPP: pentonse phosphate pathway; proK (proteinase K);UPRmt: mitochondrial unfolded protein response; RNAi: RNA interference.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Proteínas Mitocondriales/fisiología , Mitofagia/fisiología , Factores de Transcripción/fisiología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Genes de Helminto , Hipoxia/genética , Hipoxia/fisiopatología , Mutación con Pérdida de Función , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Proteínas Mitocondriales/genética , Mitofagia/genética , Daño por Reperfusión/genética , Daño por Reperfusión/fisiopatología , Factores de Transcripción/genética
16.
ChemMedChem ; 16(7): 1143-1162, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33331124

RESUMEN

Mitochondrial respiratory complex II (CII), also known as succinate dehydrogenase, plays a critical role in mitochondrial metabolism. Known but low potency CII inhibitors are selectively cytotoxic to cancer cells including the benzothiadiazine-based anti-hypoglycemic diazoxide. Herein, we study the structure-activity relationship of benzothiadiazine derivatives for CII inhibition and their effect on cancer cells for the first time. A 15-fold increase in CII inhibition was achieved over diazoxide, albeit with micromolar IC50 values. Cytotoxicity evaluation of the novel derivatives resulted in the identification of compounds with much greater antineoplastic effect than diazoxide, the most potent of which possesses an IC50 of 2.93±0.07 µM in a cellular model of triple-negative breast cancer, with high selectivity over nonmalignant cells and more than double the potency of the clinical agent 5-fluorouracil. No correlation between cytotoxicity and CII inhibition was found, thus indicating an as-yet-undefined mechanism of action of this scaffold. The derivatives described herein represent valuable hit compounds for therapeutic discovery in triple-negative breast cancer.


Asunto(s)
Antineoplásicos/farmacología , Benzotiadiazinas/farmacología , Descubrimiento de Drogas , Antineoplásicos/síntesis química , Antineoplásicos/química , Benzotiadiazinas/síntesis química , Benzotiadiazinas/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Halogenación , Humanos , Estructura Molecular , Relación Estructura-Actividad
17.
Redox Biol ; 37: 101733, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33007502

RESUMEN

Generation of mitochondrial reactive oxygen species (ROS) is an important process in triggering cellular necrosis and tissue infarction during ischemia-reperfusion (IR) injury. Ischemia results in accumulation of the metabolite succinate. Rapid oxidation of this succinate by mitochondrial complex II (Cx-II) during reperfusion reduces the co-enzyme Q (Co-Q) pool, thereby driving electrons backward into complex-I (Cx-I), a process known as reverse electron transport (RET), which is thought to be a major source of ROS. During ischemia, enhanced glycolysis results in an acidic cellular pH at the onset of reperfusion. While the process of RsET within Cx-I is known to be enhanced by a high mitochondrial trans-membrane ΔpH, the impact of pH itself on the integrated process of Cx-II to Cx-I RET has not been fully studied. Using isolated mouse heart and liver mitochondria under conditions which mimic the onset of reperfusion (i.e., high [ADP]), we show that mitochondrial respiration (state 2 and state 3) as well as isolated Cx-II activity are impaired at acidic pH, whereas the overall generation of ROS by Cx-II to Cx-I RET was insensitive to pH. Together these data indicate that the acceleration of Cx-I RET ROS by ΔpH appears to be cancelled out by the impact of pH on the source of electrons, i.e. Cx-II. Implications for the role of Cx-II to Cx-I RET derived ROS in IR injury are discussed.


Asunto(s)
Mitocondrias Cardíacas , Daño por Reperfusión , Animales , Transporte de Electrón , Ratones , Mitocondrias Cardíacas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reperfusión , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo
18.
Elife ; 92020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32795389

RESUMEN

Alkb homolog 7 (ALKBH7) is a mitochondrial α-ketoglutarate dioxygenase required for DNA alkylation-induced necrosis, but its function and substrates remain unclear. Herein, we show ALKBH7 regulates dialdehyde metabolism, which impacts the cardiac response to ischemia-reperfusion (IR) injury. Using a multi-omics approach, we find no evidence ALKBH7 functions as a prolyl-hydroxylase, but we do find Alkbh7-/- mice have elevated glyoxalase I (GLO-1), a dialdehyde detoxifying enzyme. Metabolic pathways related to the glycolytic by-product methylglyoxal (MGO) are rewired in Alkbh7-/- mice, along with elevated levels of MGO protein adducts. Despite greater glycative stress, hearts from Alkbh7-/- mice are protected against IR injury, in a manner blocked by GLO-1 inhibition. Integrating these observations, we propose ALKBH7 regulates glyoxal metabolism, and that protection against necrosis and cardiac IR injury bought on by ALKBH7 deficiency originates from the signaling response to elevated MGO stress.


Asunto(s)
Enzimas AlkB/genética , Glioxal/metabolismo , Redes y Vías Metabólicas , Necrosis/genética , Daño por Reperfusión/metabolismo , Enzimas AlkB/metabolismo , Animales , Femenino , Masculino , Ratones
19.
Nat Commun ; 11(1): 3479, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32661250

RESUMEN

Genetic factors contribute to the risk of thrombotic diseases. Recent genome wide association studies have identified genetic loci including SLC44A2 which may regulate thrombosis. Here we show that Slc44a2 controls platelet activation and thrombosis by regulating mitochondrial energetics. We find that Slc44a2 null mice (Slc44a2(KO)) have increased bleeding times and delayed thrombosis compared to wild-type (Slc44a2(WT)) controls. Platelets from Slc44a2(KO) mice have impaired activation in response to thrombin. We discover that Slc44a2 mediates choline transport into mitochondria, where choline metabolism leads to an increase in mitochondrial oxygen consumption and ATP production. Platelets lacking Slc44a2 contain less ATP at rest, release less ATP when activated, and have an activation defect that can be rescued by exogenous ADP. Taken together, our data suggest that mitochondria require choline for maximum function, demonstrate the importance of mitochondrial metabolism to platelet activation, and reveal a mechanism by which Slc44a2 influences thrombosis.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Activación Plaquetaria/fisiología , Trombosis/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Western Blotting , Modelos Animales de Enfermedad , Estudio de Asociación del Genoma Completo , Masculino , Espectrometría de Masas , Proteínas de Transporte de Membrana/genética , Ratones , Ratones Noqueados , Mitocondrias/genética , Activación Plaquetaria/genética , Agregación Plaquetaria/genética , Agregación Plaquetaria/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Trombosis/genética
20.
J Cell Mol Med ; 24(11): 5937-5954, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32384583

RESUMEN

Reducing infarct size during a cardiac ischaemic-reperfusion episode is still of paramount importance, because the extension of myocardial necrosis is an important risk factor for developing heart failure. Cardiac ischaemia-reperfusion injury (IRI) is in principle a metabolic pathology as it is caused by abruptly halted metabolism during the ischaemic episode and exacerbated by sudden restart of specific metabolic pathways at reperfusion. It should therefore not come as a surprise that therapy directed at metabolic pathways can modulate IRI. Here, we summarize the current knowledge of important metabolic pathways as therapeutic targets to combat cardiac IRI. Activating metabolic pathways such as glycolysis (eg AMPK activators), glucose oxidation (activating pyruvate dehydrogenase complex), ketone oxidation (increasing ketone plasma levels), hexosamine biosynthesis pathway (O-GlcNAcylation; administration of glucosamine/glutamine) and deacetylation (activating sirtuins 1 or 3; administration of NAD+ -boosting compounds) all seem to hold promise to reduce acute IRI. In contrast, some metabolic pathways may offer protection through diminished activity. These pathways comprise the malate-aspartate shuttle (in need of novel specific reversible inhibitors), mitochondrial oxygen consumption, fatty acid oxidation (CD36 inhibitors, malonyl-CoA decarboxylase inhibitors) and mitochondrial succinate metabolism (malonate). Additionally, protecting the cristae structure of the mitochondria during IR, by maintaining the association of hexokinase II or creatine kinase with mitochondria, or inhibiting destabilization of FO F1 -ATPase dimers, prevents mitochondrial damage and thereby reduces cardiac IRI. Currently, the most promising and druggable metabolic therapy against cardiac IRI seems to be the singular or combined targeting of glycolysis, O-GlcNAcylation and metabolism of ketones, fatty acids and succinate.


Asunto(s)
Terapia Molecular Dirigida , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Animales , Metabolismo Energético , Humanos , Mitocondrias Cardíacas/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...