Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 535
Filtrar
1.
STAR Protoc ; 5(2): 103064, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38743568

RESUMEN

Many techniques exist for the identification of protein interaction networks. We present a protocol that relies on an affinity purification-mass spectrometry (AP-MS) approach to detect proteins that co-purify with a tagged bait of interest from Drosophila melanogaster larval muscles using the GAL4/upstream activating sequence (UAS) expression system. We also describe steps for the isolation and identification of protein complexes, followed by streamlined bioinformatics analysis for rapid and reproducible results. This protocol can be extended to investigate protein interactions in other tissues. For complete details on the use and execution of this protocol, please refer to Guo et al.1.

2.
J Neurol Sci ; 460: 122985, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38581741

RESUMEN

OBJECTIVE: To investigate hypothalamic atrophy and its clinical correlates in multiple system atrophy (MSA) in-vivo. BACKGROUND: MSA is characterized by autonomic dysfunction and parkinsonian/cerebellar manifestations. The hypothalamus regulates autonomic and homeostatic functions and is also involved in memory and learning processes. METHODS: 11 MSA, 18 Parkinson's Disease (PD) and 18 Healthy Controls (HC) were included in this study. A validated and automated hypothalamic segmentation tool was applied to 3D-T1-weighted images acquired on a 3T MRI scanner. MSA hypothalamic volumes were compared to those of PD and HC. Furthermore, the association between hypothalamic volumes and scores of autonomic, depressive, sleep and cognitive manifestations were investigated. RESULTS: Posterior hypothalamus volume was reduced in MSA compared to controls (t = 2.105, p = 0.041) and PD (t = 2.055, p = 0.046). Total hypothalamus showed a trend towards a reduction in MSA vs controls (t = 1.676, p = 0.101). Reduced posterior hypothalamus volume correlated with worse MoCA scores in the parkinsonian (MSA + PD) group and in each group separately, but not with autonomic, sleep, or depression scores. CONCLUSIONS: In-vivo structural hypothalamic involvement may be present in MSA. Reduced posterior hypothalamus volume, which includes the mammillary bodies and lateral hypothalamus, is associated with worse cognitive functioning. Larger studies on hypothalamic involvement in MSA and its clinical correlates are needed.


Asunto(s)
Hipotálamo , Imagen por Resonancia Magnética , Atrofia de Múltiples Sistemas , Humanos , Atrofia de Múltiples Sistemas/diagnóstico por imagen , Atrofia de Múltiples Sistemas/patología , Atrofia de Múltiples Sistemas/fisiopatología , Masculino , Femenino , Hipotálamo/diagnóstico por imagen , Hipotálamo/patología , Hipotálamo/fisiopatología , Anciano , Persona de Mediana Edad , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/fisiopatología
3.
Trends Immunol ; 45(4): 303-313, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38508931

RESUMEN

CD4+ T cells are crucial in generating and sustaining immune responses. They orchestrate and fine-tune mammalian innate and adaptive immunity through cell-based interactions and the release of cytokines. The role of these cells in contributing to the efficacy of antitumor immunity and immunotherapy has just started to be uncovered. Yet, many aspects of the CD4+ T cell response are still unclear, including the differentiation pathways controlling such cells during cancer progression, the external signals that program them, and how the combination of these factors direct ensuing immune responses or immune-restorative therapies. In this review, we focus on recent advances in understanding CD4+ T cell regulation during cancer progression and the importance of CD4+ T cells in immunotherapies.


Asunto(s)
Neoplasias , Linfocitos T , Animales , Humanos , Linfocitos T/patología , Inmunoterapia , Inmunidad Adaptativa , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Mamíferos
4.
Mov Disord ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38477376

RESUMEN

BACKGROUND: Using 11 C-(R)-PK11195-PET, we found increased microglia activation in isolated REM sleep behavior disorder (iRBD) patients. Their role remains to be clarified. OBJECTIVES: The objective is to assess relationships between activated microglia and progression of nigrostriatal dysfunction in iRBD. METHODS: Fifteen iRBD patients previously scanned with 11 C-(R)-PK11195 and 18 F-DOPA-PET underwent repeat 18 F-DOPA-PET after 3 years. 18 F-DOPA Ki changes from baseline were evaluated with volumes-of-interest and voxel-based analyses. RESULTS: Significant 18 F-DOPA Ki reductions were found in putamen and caudate. Reductions were larger and more widespread in patients with increased nigral microglia activation at baseline. Left nigral 11 C-(R)-PK11195 binding at baseline was a predictor of 18 F-DOPA Ki reduction in left caudate (coef = -0.0426, P = 0.016). CONCLUSIONS: Subjects with increased baseline 11 C-(R)-PK11195 binding have greater changes in nigrostriatal function, suggesting a detrimental rather than protective effect of microglial activation. Alternatively, both phenomena occur in patients with prominent nigrostriatal dysfunction without a causative link. The clinical and therapeutic implications of these findings need further elucidation. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

5.
Nat Commun ; 15(1): 1224, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336934

RESUMEN

The peripheral immune system is important in neurodegenerative diseases, both in protecting and inflaming the brain, but the underlying mechanisms remain elusive. Alzheimer's Disease is commonly preceded by a prodromal period. Here, we report the presence of large Aß aggregates in plasma from patients with mild cognitive impairment (n = 38). The aggregates are associated with low level Alzheimer's Disease-like brain pathology as observed by 11C-PiB PET and 18F-FTP PET and lowered CD18-rich monocytes. We characterize complement receptor 4 as a strong binder of amyloids and show Aß aggregates are preferentially phagocytosed and stimulate lysosomal activity through this receptor in stem cell-derived microglia. KIM127 integrin activation in monocytes promotes size selective phagocytosis of Aß. Hydrodynamic calculations suggest Aß aggregates associate with vessel walls of the cortical capillaries. In turn, we hypothesize aggregates may provide an adhesion substrate for recruiting CD18-rich monocytes into the cortex. Our results support a role for complement receptor 4 in regulating amyloid homeostasis.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/patología , Integrina alfaXbeta2 , Monocitos/patología
6.
Neuroimage ; 288: 120531, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38331333

RESUMEN

Gait is an excellent indicator of physical, emotional, and mental health. Previous studies have shown that gait impairments in ageing are common, but the neural basis of these impairments are unclear. Existing methodologies are suboptimal and novel paradigms capable of capturing neural activation related to real walking are needed. In this study, we used a hybrid PET/MR system and measured glucose metabolism related to both walking and standing with a dual-injection paradigm in a single study session. For this study, 15 healthy older adults (10 females, age range: 60.5-70.7 years) with normal cognition were recruited from the community. Each participant received an intravenous injection of [18F]-2-fluoro-2-deoxyglucose (FDG) before engaging in two distinct tasks, a static postural control task (standing) and a walking task. After each task, participants were imaged. To discern independent neural functions related to walking compared to standing, we applied a bespoke dose correction to remove the residual 18F signal of the first scan (PETSTAND) from the second scan (PETWALK) and proportional scaling to the global mean, cerebellum, or white matter (WM). Whole-brain differences in walking-elicited neural activity measured with FDG-PET were assessed using a one-sample t-test. In this study, we show that a dual-injection paradigm in healthy older adults is feasible with biologically valid findings. Our results with a dose correction and scaling to the global mean showed that walking, compared to standing, increased glucose consumption in the cuneus (Z = 7.03), the temporal gyrus (Z = 6.91) and the orbital frontal cortex (Z = 6.71). Subcortically, we observed increased glucose metabolism in the supraspinal locomotor network including the thalamus (Z = 6.55), cerebellar vermis and the brainstem (pedunculopontine/mesencephalic locomotor region). Exploratory analyses using proportional scaling to the cerebellum and WM returned similar findings. Here, we have established the feasibility and tolerability of a novel method capable of capturing neural activations related to actual walking and extended previous knowledge including the recruitment of brain regions involved in sensory processing. Our paradigm could be used to explore pathological alterations in various gait disorders.


Asunto(s)
Fluorodesoxiglucosa F18 , Neuroanatomía , Femenino , Humanos , Anciano , Persona de Mediana Edad , Marcha/fisiología , Caminata/fisiología , Tomografía de Emisión de Positrones/métodos , Glucosa/metabolismo
7.
J Neuropsychol ; 18(1): 120-135, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37382036

RESUMEN

The pathophysiological development of Alzheimer's disease (AD) begins in the brain years before the onset of clinical symptoms. The accumulation of beta-amyloid (Aß) is thought to be the first cortical pathology to occur. Carrying one apolipoprotein E (APOE) ε4 allele increases the risk of developing AD at least 2-3 times and is associated with earlier Aß accumulation. Although it is difficult to identify Aß-related cognitive impairment in early AD with standard cognitive tests, more sensitive memory tests may be able to do this. We sought to examine associations between Aß and performance on three tests within three subdomains of memory, verbal, visual, and associative memory, to elucidate which of these tests were sensitive to Aß-related cognitive impairment in at-risk subjects. 55 APOE ε4 carriers underwent MRI, 11 C-Pittsburgh Compound B (PiB) PET, and cognitive testing. A composite cortical PiB SUVR cut-off score of 1.5 was used to categorise subjects as either APOE ε4 Aß+ or APOE ε4 Aß-. Correlations were carried out using cortical surface analysis. In the whole APOE ε4 group, we found significant correlations between Aß load and performance on verbal, visual, and associative memory tests in widespread cortical areas, the strongest association being with performance on associative memory tests. In the APOE ε4 Aß+ group, we found significant correlations between Aß load and performance of verbal and associative, but not visual, memory in localised cortical areas. Performance on verbal and associative memory tests provides sensitive markers of early Aß-related cognitive impairment in at-risk subjects.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/psicología , Apolipoproteína E4/genética , Péptidos beta-Amiloides/metabolismo , Encéfalo/patología , Memoria/fisiología
8.
Alzheimers Dement ; 20(1): 459-471, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37679610

RESUMEN

INTRODUCTION: Capillary dysfunction, characterized by disturbances in capillary blood flow distribution, might be an overlooked factor in the development of Alzheimer's disease (AD). This study investigated microvascular blood flow in preclinical and prodromal AD individuals. METHODS: Using dynamic susceptibility contrast magnetic resonance imaging and positron emission tomography, we examined alterations in microvascular circulation and levels of Aß deposition in two independent cohorts of APOE ε4 carriers. RESULTS: Capillary dysfunction was elevated in both prodromal and preclinical AD individuals compared to age-matched controls. Additionally, the prodromal group exhibited higher levels of capillary dysfunction compared to the preclinical group. DISCUSSION: These findings suggest that capillary dysfunction can be detected at the preclinical stage of AD and indicates a worsening of capillary dysfunction throughout the AD continuum. Understanding the interaction between capillary dysfunction and Aß could provide insights into the relationship between cardiovascular risk factors and the development of AD. HIGHLIGHTS: Alzheimer's disease (AD) is associated with disturbances in microvascular circulation. Capillary dysfunction can be detected in preclinical AD. As cognitive symptoms progress in prodromal AD, capillary dysfunction worsens. Capillary dysfunction may impede the clearance of beta-amyloid (Aß). Capillary dysfunction might contribute to the development of AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Anciano , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Encéfalo/patología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/genética , Tomografía de Emisión de Positrones/métodos
9.
Eur J Neurol ; 31(1): e16101, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37847229

RESUMEN

BACKGROUND: Reduced cortical acetylcholinesterase activity, as measured by 11 C-donepezil positron emission tomography (PET), has been reported in patients with isolated rapid eye movement (REM) sleep behavior disorder (iRBD). However, its progression and clinical implications have not been fully investigated. Here, we explored the relationship between longitudinal changes in brain acetylcholinesterase activity and cognitive function in iRBD. METHODS: Twelve iRBD patients underwent 11 C-donepezil PET at baseline and after 3 years. PET images were interrogated with statistical parametric mapping (SPM) and a regions of interest (ROI) approach. Clinical progression was assessed with the Movement Disorder Society-Unified Parkinson's Disease Rating Scale-Part III (MDS-UPDRS-III). Cognitive function was rated using the Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA). RESULTS: From baseline to follow-up, the mean 11 C-donepezil distribution volume ratio (DVR) decreased in the cortex (p = 0.006), thalamus (p = 0.013), and caudate (p = 0.013) ROI. Despite no significant changes in the group mean MMSE or MoCA scores being observed, individually, seven patients showed a decline in their scores on these cognitive tests. Subgroup analysis showed that only the subgroup of patients with a decline in cognitive scores had a significant reduction in mean cortical 11 C-donepezil DVR. CONCLUSIONS: Our results show that severity of brain cholinergic dysfunction in iRBD patients increases significantly over 3 years, and those changes are more severe in those with a decline in cognitive test scores.


Asunto(s)
Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Humanos , Trastorno de la Conducta del Sueño REM/psicología , Acetilcolinesterasa , Donepezilo , Encéfalo/diagnóstico por imagen
10.
Hepatol Commun ; 7(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38055623

RESUMEN

BACKGROUND: There are no immunological biomarkers that predict control of chronic hepatitis B (CHB). The lack of immune biomarkers raises concerns for therapies targeting PD-1/PD-L1 because they have the potential for immune-related adverse events. Defining specific immune functions associated with control of HBV replication could identify patients likely to respond to anti-PD-1/PD-L1 therapies and achieve a durable functional cure. METHODS: We enrolled immunotolerant, HBeAg+ immune-active (IA+), HBeAg- immune-active (IA-), inactive carriers, and functionally cured patients to test ex vivo PD-1 blockade on HBV-specific T cell functionality. Peripheral blood mononuclear cells were stimulated with overlapping peptides covering HBV proteins +/-α-PD-1 blockade. Functional T cells were measured using a 2-color FluoroSpot assay for interferon-γ and IL-2. Ex vivo functional restoration was compared to the interferon response capacity assay, which predicts overall survival in cancer patients receiving checkpoint inhibitors. RESULTS: Ex vivo interferon-γ+ responses did not differ across clinical phases. IL-2+ responses were significantly higher in patients with better viral control and preferentially restored with PD-1 blockade. Inactive carrier patients displayed the greatest increase in IL-2 production, which was dominated by CD4 T cell and response to the HBcAg. The interferon response capacity assay significantly correlated with the degree of HBV-specific T cell restoration. CONCLUSIONS: IL-2 production was associated with better HBV control and superior to interferon-γ as a marker of T cell restoration following ex vivo PD-1 blockade. Our study suggests that responsiveness to ex vivo PD-1 blockade, or the interferon response capacity assay, may support stratification for α-PD-1 therapies.


Asunto(s)
Hepatitis B Crónica , Humanos , Linfocitos T/metabolismo , Virus de la Hepatitis B , Interleucina-2 , Interferón gamma , Antígeno B7-H1 , Antígenos e de la Hepatitis B , Receptor de Muerte Celular Programada 1 , Leucocitos Mononucleares/metabolismo , Biomarcadores
11.
J Diabetes Sci Technol ; : 19322968231207861, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37864354

RESUMEN

BACKGROUND: Accurate glucose monitoring is vitally important in neonatal intensive care units (NICUs) and clinicians use blood glucose monitors (BGM), such as the Inform II, for bedside glucose monitoring. Studies on BGM use in neonates have demonstrated good reliability; however, most studies only included healthy-term neonates. Therefore, the applicability of results to the preterm and/or ill neonate is limited. OBJECTIVES: In preterm and ill neonates, quantify differences in glucose concentrations between (1) capillary glucose (measured by BGM) and arterial glucose (measured by YSI 2300 Stat Plus) and (2) between aliquots from the same arterial blood sample, one measured by BGM versus one by YSI. DESIGN/METHODS: Forty neonates were included in the study. Using Inform II, we measured glucose concentrations on blood samples simultaneously collected from capillary circulation via heel puncture and from arterial circulation via an umbilical catheter. Plasma was then separated from the remainder of the arterial whole blood sample and a YSI 2300 Stat Plus measured plasma glucose concentration. RESULTS: The dominant majority of arterial BGM results met the Clinical and Laboratory Standard Institute (CLSI) and Food and Drug Administration (FDA) tolerance criteria. Greater discrepancy was observed with capillary BGM values with an average of 27.5% of results falling outside tolerance criteria. CONCLUSIONS: Blood glucose monitor testing provided reliable results from arterial blood. However, users should interpret hypoglycemic results obtained from capillary blood with caution.

12.
Genetics ; 225(3)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37713608

RESUMEN

Phosphorylation reactions performed by protein kinases are one of the most studied post-translational modifications within cells. Much is understood about conserved residues within protein kinase domains that perform catalysis of the phosphotransfer reaction, yet the identity of the target substrates and downstream biological effects vary widely among cells, tissues, and organisms. Here, we characterize key residues essential for NUAK kinase activity in Drosophila melanogaster myogenesis and homeostasis. Creation of a NUAK kinase-dead mutation using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 results in lethality at the embryo to larval transition, while loss of NUAK catalytic function later in development produces aggregation of the chaperone protein αB-crystallin/CryAB in muscle tissue. Yeast 2-hybrid assays demonstrate a physical interaction between NUAK and CryAB. We further show that a phospho-mimetic version of NUAK promotes the phosphorylation of CryAB and this post-translational modification occurs at 2 previously unidentified phosphosites that are conserved in the primary sequence of human CryAB. Mutation of these serine residues in D. melanogaster NUAK abolishes CryAB phosphorylation, thus, proving their necessity at the biochemical level. These studies together highlight the importance of kinase activity regulation and provide a platform to further explore muscle tissue proteostasis.


Asunto(s)
Drosophila melanogaster , Drosophila , Animales , Humanos , Drosophila melanogaster/genética , Músculos , Fosforilación , Procesamiento Proteico-Postraduccional
13.
Ann Rheum Dis ; 82(12): 1516-1526, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37699654

RESUMEN

OBJECTIVES: To investigate the efficacy and safety of otilimab, an antigranulocyte-macrophage colony-stimulating factor antibody, in patients with active rheumatoid arthritis. METHODS: Two phase 3, double-blind randomised controlled trials including patients with inadequate responses to methotrexate (contRAst 1) or conventional synthetic/biologic disease-modifying antirheumatic drugs (cs/bDMARDs; contRAst 2). Patients received background csDMARDs. Through a testing hierarchy, subcutaneous otilimab (90/150 mg once weekly) was compared with placebo for week 12 endpoints (after which, patients receiving placebo switched to active interventions) or oral tofacitinib (5 mg two times per day) for week 24 endpoints. PRIMARY ENDPOINT: proportion of patients achieving an American College of Rheumatology response ≥20% (ACR20) at week 12. RESULTS: The intention-to-treat populations comprised 1537 (contRAst 1) and 1625 (contRAst 2) patients. PRIMARY ENDPOINT: proportions of ACR20 responders were statistically significantly greater with otilimab 90 mg and 150 mg vs placebo in contRAst 1 (54.7% (p=0.0023) and 50.9% (p=0.0362) vs 41.7%) and contRAst 2 (54.9% (p<0.0001) and 54.5% (p<0.0001) vs 32.5%). Secondary endpoints: in both trials, compared with placebo, otilimab increased the proportion of Clinical Disease Activity Index (CDAI) low disease activity (LDA) responders (not significant for otilimab 150 mg in contRAst 1), and reduced Health Assessment Questionnaire-Disability Index (HAQ-DI) scores. Benefits with tofacitinib were consistently greater than with otilimab across multiple endpoints. Safety outcomes were similar across treatment groups. CONCLUSIONS: Although otilimab demonstrated superiority to placebo in ACR20, CDAI LDA and HAQ-DI, improved symptoms, and had an acceptable safety profile, it was inferior to tofacitinib. TRIAL REGISTRATION NUMBERS: NCT03980483, NCT03970837.


Asunto(s)
Antirreumáticos , Artritis Reumatoide , Productos Biológicos , Humanos , Antirreumáticos/efectos adversos , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/inducido químicamente , Metotrexato/uso terapéutico , Productos Biológicos/uso terapéutico , Resultado del Tratamiento , Método Doble Ciego , Pirroles/efectos adversos , Ensayos Clínicos Controlados Aleatorios como Asunto
14.
Ann Rheum Dis ; 82(12): 1527-1537, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37696589

RESUMEN

OBJECTIVES: To investigate the efficacy and safety of otilimab, an anti-granulocyte-macrophage colony-stimulating factor antibody, in patients with active rheumatoid arthritis and an inadequate response to conventional synthetic (cs) and biologic disease-modifying antirheumatic drugs (DMARDs) and/or Janus kinase inhibitors. METHODS: ContRAst 3 was a 24-week, phase III, multicentre, randomised controlled trial. Patients received subcutaneous otilimab (90/150 mg once weekly), subcutaneous sarilumab (200 mg every 2 weeks) or placebo for 12 weeks, in addition to csDMARDs. Patients receiving placebo were switched to active interventions at week 12 and treatment continued to week 24. The primary end point was the proportion of patients achieving an American College of Rheumatology ≥20% response (ACR20) at week 12. RESULTS: Overall, 549 patients received treatment. At week 12, there was no significant difference in the proportion of ACR20 responders with otilimab 90 mg and 150 mg versus placebo (45% (p=0.2868) and 51% (p=0.0596) vs 38%, respectively). There were no significant differences in Clinical Disease Activity Index, Health Assessment Questionnaire-Disability Index, pain Visual Analogue Scale or Functional Assessment of Chronic Illness Therapy-Fatigue scores with otilimab versus placebo at week 12. Sarilumab demonstrated superiority to otilimab in ACR20 response and secondary end points. The incidence of adverse or serious adverse events was similar across treatment groups. CONCLUSIONS: Otilimab demonstrated an acceptable safety profile but failed to achieve the primary end point of ACR20 and improve secondary end points versus placebo or demonstrate non-inferiority to sarilumab in this patient population. TRIAL REGISTRATION NUMBER: NCT04134728.


Asunto(s)
Antirreumáticos , Artritis Reumatoide , Humanos , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/inducido químicamente , Antirreumáticos/efectos adversos , Anticuerpos Monoclonales Humanizados/efectos adversos , Índice de Severidad de la Enfermedad , Resultado del Tratamiento , Método Doble Ciego , Metotrexato/uso terapéutico
15.
Cell Rep ; 42(9): 113047, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37651234

RESUMEN

CD4 T cells are central effectors of anti-cancer immunity and immunotherapy, yet the regulation of CD4 tumor-specific T (TTS) cells is unclear. We demonstrate that CD4 TTS cells are quickly primed and begin to divide following tumor initiation. However, unlike CD8 TTS cells or exhaustion programming, CD4 TTS cell proliferation is rapidly frozen in place by a functional interplay of regulatory T cells and CTLA4. Together these mechanisms paralyze CD4 TTS cell differentiation, redirecting metabolic circuits, and reducing their accumulation in the tumor. The paralyzed state is actively maintained throughout cancer progression and CD4 TTS cells rapidly resume proliferation and functional differentiation when the suppressive constraints are alleviated. Overcoming their paralysis established long-term tumor control, demonstrating the importance of rapidly crippling CD4 TTS cells for tumor progression and their potential restoration as therapeutic targets.


Asunto(s)
Linfocitos T CD4-Positivos , Neoplasias , Humanos , Linfocitos T CD8-positivos , Neoplasias/metabolismo , Linfocitos T Reguladores , Ganglios Linfáticos
16.
Brain Res ; 1814: 148436, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37268248

RESUMEN

Physical exercise benefits Parkinson's disease (PD) patients but the mechanism is unclear. Cannabinoid receptor type 1 (CB1R) is known to be reduced in PD patients and animal models. We test the hypothesis that binding of the CB1R inverse agonist, [3H]SR141716A, is normalized by treadmill exercise in the toxin-induced 6-hydroxydopamine (6-OHDA) model of PD. Male rats had unilateral striatal injections of 6-OHDA or saline. After 15 days, half were submitted to treadmill exercise and half remained sedentary. [3H]SR141716A autoradiography was performed in postmortem tissue from striatum, substantia nigra (SN) and hippocampus. There was a 41% decrease of [3H]SR141716A specific binding in the ipsilateral SN of 6-OHDA-injected sedentary animals which was attenuated to 15% by exercise, when compared to saline-injected animals. No striatal differences were observed. A 30% bilateral hippocampal increase was observed in both healthy and 6-OHDA exercised groups. In addition, a positive correlation between nigral [3H]SR141716A binding and nociceptive threshold was observed in PD-exercised animals (p = 0.0008), suggesting a beneficial effect of exercise in the pain associated with the model. Chronic exercise can reduce the detrimental effects of PD on nigral [3H]SR141716A binding, similar to the reported reduction after dopamine replacement therapy, so should be considered as an adjunct therapy for PD.


Asunto(s)
Enfermedad de Parkinson , Ratas , Masculino , Animales , Enfermedad de Parkinson/metabolismo , Oxidopamina/farmacología , Ratas Wistar , Agonismo Inverso de Drogas , Rimonabant/metabolismo , Rimonabant/farmacología , Sustancia Negra/metabolismo , Cuerpo Estriado/metabolismo , Hipocampo/metabolismo , Receptores de Cannabinoides/metabolismo , Modelos Animales de Enfermedad
17.
Mol Biol Cell ; 34(9): ar91, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37379167

RESUMEN

Autophagy is important for cellular homeostasis and to prevent the abnormal accumulation of proteins. While many proteins that comprise the canonical autophagy pathway have been characterized, the identification of new regulators may help understand tissue and/or stress-specific responses. Using an in-silico approach, we identified Striatin interacting protein (Strip), MOB kinase activator 4, and fibroblast growth factor receptor 1 oncogene partner 2 as conserved mediators of muscle tissue maintenance. We performed affinity purification-mass spectrometry (AP-MS) experiments with Drosophila melanogaster Strip as a bait protein and copurified additional Striatin-interacting phosphatase and kinase (STRIPAK) complex members from larval muscle tissue. NUAK family kinase 1 (NUAK) and Starvin (Stv) also emerged as Strip-binding proteins and these physical interactions were verified in vivo using proximity ligation assays. To understand the functional significance of the STRIPAK-NUAK-Stv complex, we employed a sensitized genetic assay combined with RNA interference (RNAi) to demonstrate that both NUAK and stv function in the same biological process with genes that encode for STRIPAK complex proteins. RNAi-directed knockdown of Strip in muscle tissue led to the accumulation of ubiquitinated cargo, p62, and Autophagy-related 8a, consistent with a block in autophagy. Indeed, autophagic flux was decreased in Strip RNAi muscles, while lysosome biogenesis and activity were unaffected. Our results support a model whereby the STRIPAK-NUAK-Stv complex coordinately regulates autophagy in muscle tissue.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Drosophila melanogaster/genética , Proteínas Portadoras , Autofagia , Músculos , Citoplasma
18.
bioRxiv ; 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37131587

RESUMEN

CD4 T cells are important effectors of anti-tumor immunity, yet the regulation of CD4 tumor-specific T (T TS ) cells during cancer development is still unclear. We demonstrate that CD4 T TS cells are initially primed in the tumor draining lymph node and begin to divide following tumor initiation. Distinct from CD8 T TS cells and previously defined exhaustion programs, CD4 T TS cell proliferation is rapidly frozen in place and differentiation stunted by a functional interplay of T regulatory cells and both intrinsic and extrinsic CTLA4 signaling. Together these mechanisms paralyze CD4 T TS cell differentiation, redirecting metabolic and cytokine production circuits, and reducing CD4 T TS cell accumulation in the tumor. Paralysis is actively maintained throughout cancer progression and CD4 T TS cells rapidly resume proliferation and functional differentiation when both suppressive reactions are alleviated. Strikingly, Treg depletion alone reciprocally induced CD4 T TS cells to themselves become tumor-specific Tregs, whereas CTLA4 blockade alone failed to promote T helper differentiation. Overcoming their paralysis established long-term tumor control, demonstrating a novel immune evasion mechanism that specifically cripples CD4 T TS cells to favor tumor progression.

19.
Nat Rev Neurol ; 19(6): 333-345, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37142796

RESUMEN

Many advances in understanding the pathophysiology of Parkinson disease (PD) have been based on research addressing its motor symptoms and phenotypes. Various data-driven clinical phenotyping studies supported by neuropathological and in vivo neuroimaging data suggest the existence of distinct non-motor endophenotypes of PD even at diagnosis, a concept further strengthened by the predominantly non-motor spectrum of symptoms in prodromal PD. Preclinical and clinical studies support early dysfunction of noradrenergic transmission in both the CNS and peripheral nervous system circuits in patients with PD that results in a specific cluster of non-motor symptoms, including rapid eye movement sleep behaviour disorder, pain, anxiety and dysautonomia (particularly orthostatic hypotension and urinary dysfunction). Cluster analyses of large independent cohorts of patients with PD and phenotype-focused studies have confirmed the existence of a noradrenergic subtype of PD, which had been previously postulated but not fully characterized. This Review discusses the translational work that unravelled the clinical and neuropathological processes underpinning the noradrenergic PD subtype. Although some overlap with other PD subtypes is inevitable as the disease progresses, recognition of noradrenergic PD as a distinct early disease subtype represents an important advance towards the delivery of personalized medicine for patients with PD.


Asunto(s)
Enfermedad de Parkinson , Disautonomías Primarias , Trastorno de la Conducta del Sueño REM , Animales , Enfermedad de Parkinson/diagnóstico , Fenotipo , Trastorno de la Conducta del Sueño REM/diagnóstico , Modelos Animales
20.
Mov Disord ; 38(5): 796-805, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36905188

RESUMEN

BACKGROUND: Patients with Lewy body diseases exhibit variable degrees of cortical and subcortical hypometabolism. However, the underlying causes behind this progressive hypometabolism remain unresolved. Generalized synaptic degeneration may be one key contributor. OBJECTIVE: The objective of this study was to investigate whether local cortical synaptic loss is proportionally linked to the magnitude of hypometabolism in Lewy body disease. METHOD: Using in vivo positron emission tomography (PET) we investigated cerebral glucose metabolism and quantified the density of cerebral synapses, as measured with [18 F]fluorodeoxyglucose ([18 F]FDG) PET and [11 C]UCB-J, respectively. Volumes-of-interest were defined on magnetic resonance T1 scans and regional standard uptake value ratios-1 values were obtained for 14 pre-selected brain regions. Between-group comparisons were conducted at voxel-level. RESULTS: We observed regional differences in both synaptic density and cerebral glucose consumption in our cohorts of non-demented and demented patients with Parkinson's disease or dementia with Lewy bodies compared to healthy subjects. Additionally, voxel-wise comparisons showed a clear difference in cortical regions between demented patients and controls for both tracers. Importantly, our findings strongly suggested that the magnitude of reduced glucose uptake exceeded the magnitude of reduced cortical synaptic density. CONCLUSION: Here, we investigated the relationship between in vivo glucose uptake and the magnitude of synaptic density as measured using [18 F]FDG PET and [11 C]UCB-J PET in Lewy body patients. The magnitude of reduced [18 F]FDG uptake was greater than the corresponding decline in [11 C]UCB-J binding. Therefore, the progressive hypometabolism seen in Lewy body disorders cannot be fully explained by generalized synaptic degeneration. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Humanos , Enfermedad por Cuerpos de Lewy/diagnóstico por imagen , Enfermedad por Cuerpos de Lewy/metabolismo , Fluorodesoxiglucosa F18 , Glucosa/metabolismo , Cuerpos de Lewy/metabolismo , Tomografía de Emisión de Positrones , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...