Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RNA ; 20(12): 1955-62, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25336584

RESUMEN

The signal recognition particle (SRP) is a conserved ribonucleoprotein particle that targets membrane and secreted proteins to translocation channels in membranes. In eukaryotes, the Alu domain, which comprises the 5' and 3' extremities of the SRP RNA bound to the SRP9/14 heterodimer, is thought to interact with the ribosome to pause translation elongation during membrane docking. We present the 3.2 Å resolution crystal structure of a chimeric Alu domain, comprising Alu RNA from the archaeon Pyrococcus horikoshii bound to the human Alu binding proteins SRP9/14. The structure reveals how intricate tertiary interactions stabilize the RNA 5' domain structure and how an extra, archaeal-specific, terminal stem helps constrain the Alu RNA into the active closed conformation. In this conformation, highly conserved noncanonical base pairs allow unusually tight side-by-side packing of 5' and 3' RNA stems within the SRP9/14 RNA binding surface. The biological relevance of this structure is confirmed by showing that a reconstituted full-length chimeric archaeal-human SRP is competent to elicit elongation arrest in vitro. The structure will be useful in refining our understanding of how the SRP Alu domain interacts with the ribosome.


Asunto(s)
Conformación de Ácido Nucleico , Partícula de Reconocimiento de Señal/química , Cristalografía por Rayos X , Humanos , Conformación Molecular , Factores de Elongación de Péptidos/química , Factores de Elongación de Péptidos/genética , Biosíntesis de Proteínas/genética , Estructura Terciaria de Proteína/genética , Pyrococcus horikoshii/genética , Pliegue del ARN/genética , Partícula de Reconocimiento de Señal/genética , Partícula de Reconocimiento de Señal/ultraestructura
2.
PLoS One ; 8(5): e63010, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23667562

RESUMEN

Tyrosine recombinases are conserved in the three kingdoms of life. Here we present the first crystal structure of a full-length archaeal tyrosine recombinase, XerA from Pyrococcus abyssi, at 3.0 Å resolution. In the absence of DNA substrate XerA crystallizes as a dimer where each monomer displays a tertiary structure similar to that of DNA-bound Tyr-recombinases. Active sites are assembled in the absence of dif except for the catalytic Tyr, which is extruded and located equidistant from each active site within the dimer. Using XerA active site mutants we demonstrate that XerA follows the classical cis-cleavage reaction, suggesting rearrangements of the C-terminal domain upon DNA binding. Surprisingly, XerA C-terminal αN helices dock in cis in a groove that, in bacterial tyrosine recombinases, accommodates in trans αN helices of neighbour monomers in the Holliday junction intermediates. Deletion of the XerA C-terminal αN helix does not impair cleavage of suicide substrates but prevents recombination catalysis. We propose that the enzymatic cycle of XerA involves the switch of the αN helix from cis to trans packing, leading to (i) repositioning of the catalytic Tyr in the active site in cis and (ii) dimer stabilisation via αN contacts in trans between monomers.


Asunto(s)
ADN de Archaea/genética , Pyrococcus abyssi/enzimología , Recombinasas/química , Recombinasas/metabolismo , Recombinación Genética , Tirosina , Apoenzimas/química , Apoenzimas/metabolismo , Secuencia de Bases , Cristalografía por Rayos X , Modelos Moleculares , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Pyrococcus abyssi/genética
3.
Proc Natl Acad Sci U S A ; 109(37): E2466-75, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22904190

RESUMEN

Transformation promotes genome plasticity in bacteria via RecA-driven homologous recombination. In the gram-positive human pathogen Streptococcus pneumoniae, the transformasome a multiprotein complex, internalizes, protects, and processes transforming DNA to generate chromosomal recombinants. Double-stranded DNA is internalized as single strands, onto which the transformation-dedicated DNA processing protein A (DprA) ensures the loading of RecA to form presynaptic filaments. We report that the structure of DprA consists of the association of a sterile alpha motif domain and a Rossmann fold and that DprA forms tail-to-tail dimers. The isolation of DprA self-interaction mutants revealed that dimerization is crucial for the formation of nucleocomplexes in vitro and for genetic transformation. Residues important for DprA-RecA interaction also were identified and mutated, establishing this interaction as equally important for transformation. Positioning of key interaction residues on the DprA structure revealed an overlap of DprA-DprA and DprA-RecA interaction surfaces. We propose a model in which RecA interaction promotes rearrangement or disruption of the DprA dimer, enabling the subsequent nucleation of RecA and its polymerization onto ssDNA.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Conformación Proteica , Rec A Recombinasas/metabolismo , Streptococcus pneumoniae/metabolismo , Transformación Bacteriana/fisiología , Proteínas Bacterianas/química , Western Blotting , Cristalización , ADN/metabolismo , Cartilla de ADN/genética , Dimerización , Proteínas de la Membrana/química , Mutagénesis Sitio-Dirigida , Transformación Bacteriana/genética , Técnicas del Sistema de Dos Híbridos
4.
Artículo en Inglés | MEDLINE | ID: mdl-22684059

RESUMEN

The Escherichia coli chromosome is organized into four macrodomains which are found in the replication-origin region (Ori), at the terminus (Ter) and on both its sides (Right and Left). The localization of the macrodomains is subject to programmed changes during the cell cycle. The compaction of the 800 kb Ter macrodomain relies on the binding of the MatP protein to a 13 bp matS motif repeated 23 times. MatP is a small DNA-binding protein of about 18 kDa that shares homology in its C-terminal region with the ribbon-helix-helix (RHH) motifs present in regulatory DNA-binding proteins such as CopG. In order to understand the DNA-compaction mechanism of MatP at an atomic level, it was decided to study the structure of apo MatP and of the nucleoprotein complex MatP-matS by both X-ray diffraction and SAXS analysis. It was demonstrated that MatP forms dimers that bind a single matS motif. Complete native X-ray data sets were collected and phasing of the diffraction data is under way.


Asunto(s)
Proteínas Cromosómicas no Histona/química , ADN Bacteriano/química , Proteínas de Unión al ADN/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Secuencia de Aminoácidos , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/aislamiento & purificación , Proteínas Cromosómicas no Histona/metabolismo , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/aislamiento & purificación , Proteínas de Unión al ADN/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/aislamiento & purificación , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia
5.
J Med Chem ; 55(3): 1021-46, 2012 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-22224594

RESUMEN

Tissue transglutaminase 2 (TG2) is a multifunctional protein primarily known for its calcium-dependent enzymatic protein cross-linking activity via isopeptide bond formation between glutamine and lysine residues. TG2 overexpression and activity have been found to be associated with Huntington's disease (HD); specifically, TG2 is up-regulated in the brains of HD patients and in animal models of the disease. Interestingly, genetic deletion of TG2 in two different HD mouse models, R6/1 and R6/2, results in improved phenotypes including a reduction in neuronal death and prolonged survival. Starting with phenylacrylamide screening hit 7d, we describe the SAR of this series leading to potent and selective TG2 inhibitors. The suitability of the compounds as in vitro tools to elucidate the biology of TG2 was demonstrated through mode of inhibition studies, characterization of druglike properties, and inhibition profiles in a cell lysate assay.


Asunto(s)
Acrilamidas/síntesis química , Proteínas de Unión al GTP/antagonistas & inhibidores , Enfermedad de Huntington/tratamiento farmacológico , Sulfonamidas/síntesis química , Transglutaminasas/antagonistas & inhibidores , Acrilamidas/química , Acrilamidas/farmacología , Animales , Células CACO-2 , Permeabilidad de la Membrana Celular , Células HEK293 , Humanos , Técnicas In Vitro , Masculino , Ratones , Microsomas Hepáticos/metabolismo , Modelos Moleculares , Piperazinas/síntesis química , Piperazinas/química , Piperazinas/farmacología , Proteína Glutamina Gamma Glutamiltransferasa 2 , Piridinas/síntesis química , Piridinas/química , Piridinas/farmacología , Pirimidinas/síntesis química , Pirimidinas/química , Pirimidinas/farmacología , Ratas , Relación Estructura-Actividad , Sulfonamidas/química , Sulfonamidas/farmacología
6.
J Bacteriol ; 193(1): 205-14, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21037007

RESUMEN

Colicin M (ColM), which is produced by some Escherichia coli strains to kill competitor strains from the same or related species, was recently shown to inhibit cell wall peptidoglycan biosynthesis through enzymatic degradation of its lipid II precursor. ColM-producing strains are protected from the toxin that they produce by coexpression of a specific immunity protein, named Cmi, whose mode of action still remains to be identified. We report here the resolution of the crystal structure of Cmi, which is composed of four ß strands and four α helices. This rather compact structure revealed a disulfide bond between residues Cys31 and Cys107. Interestingly, these two cysteines and several other residues appeared to be conserved in the sequences of several proteins of unknown function belonging to the YebF family which exhibit 25 to 35% overall sequence similarity with Cmi. Site-directed mutagenesis was performed to assess the role of these residues in the ColM immunity-conferring activity of Cmi, which showed that the disulfide bond and residues from the C-terminal extremity of the protein were functionally essential. The involvement of DsbA oxidase in the formation of the Cmi disulfide bond is also demonstrated.


Asunto(s)
Colicinas/metabolismo , Escherichia coli/metabolismo , Secuencia de Aminoácidos , Colicinas/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Metales , Modelos Moleculares , Datos de Secuencia Molecular , Familia de Multigenes , Mutagénesis Sitio-Dirigida , Unión Proteica , Factores de Tiempo
7.
Structure ; 18(9): 1075-82, 2010 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-20826334

RESUMEN

For high-throughput structural studies of protein complexes of composition inferred from proteomics data, it is crucial that candidate complexes are selected accurately. Herein, we exemplify a procedure that combines a bioinformatics tool for complex selection with in vivo validation, to deliver structural results in a medium-throughout manner. We have selected a set of 20 yeast complexes, which were predicted to be feasible by either an automated bioinformatics algorithm, by manual inspection of primary data, or by literature searches. These complexes were validated with two straightforward and efficient biochemical assays, and heterologous expression technologies of complex components were then used to produce the complexes to assess their feasibility experimentally. Approximately one-half of the selected complexes were useful for structural studies, and we detail one particular success story. Our results underscore the importance of accurate target selection and validation in avoiding transient, unstable, or simply nonexistent complexes from the outset.


Asunto(s)
Biología Computacional/métodos , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Bases de Datos de Proteínas , Proteómica , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Acta Crystallogr D Biol Crystallogr ; 65(Pt 5): 421-33, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19390147

RESUMEN

The signal recognition particle (SRP) Alu domain has been implicated in translation elongation arrest in yeasts and mammals. Fission yeast SRP RNA is similar to that of mammals, but has a minimal Alu-domain RNA lacking two stem-loops. The mammalian Alu-domain proteins SRP9 and SRP14 bind their cognate Alu RNA as a heterodimer. However, in yeasts, notably Saccharomyces cerevisiae, SRP14 is thought to bind Alu RNA as a homodimer, the SRP9 protein being replaced by SRP21, the function of which is not yet clear. Structural characterization of the Schizosaccharomyces pombe Alu domain may thus help to identify the critical features required for elongation arrest. Here, the crystal structure of the SRP14 subunit of S. pombe SRP (SpSRP14) which crystallizes as a homodimer, is presented. Comparison of the SpSRP14 homodimer with the known structure of human SRP9/14 in complex with Alu RNA suggests that many of the protein-RNA contacts centred on the conserved U-turn motif are likely to be conserved in fission yeast. Initial attempts to solve the structure using traditional selenomethionine SAD labelling failed. However, two As atoms originating from the cacodylate buffer were found to make cysteine adducts and strongly contributed to the anomalous substructure. These adducts were highly radiation-sensitive and this property was exploited using the RIP (radiation-damage-induced phasing) method. The combination of SAD and RIP phases yielded an interpretable electron-density map. This example will be of general interest to crystallographers attempting de novo phasing from crystals grown in cacodylate buffer.


Asunto(s)
Cristalografía por Rayos X/métodos , Proteínas de Unión al ARN/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/química , Partícula de Reconocimiento de Señal/química , Elementos Alu , Secuencia de Aminoácidos , Sitios de Unión , Ácido Cacodílico/farmacología , Secuencia Conservada , Cristalización , Dimerización , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Conformación Proteica , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/aislamiento & purificación , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/aislamiento & purificación , Proteínas de Schizosaccharomyces pombe/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie
9.
Nucleic Acids Res ; 37(1): 129-43, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19033360

RESUMEN

The RES complex was previously identified in yeast as a splicing factor affecting nuclear pre-mRNA retention. This complex was shown to contain three subunits, namely Snu17, Bud13 and Pml1, but its mode of action remains ill-defined. To obtain insights into its function, we have performed a structural investigation of this factor. Production of a short N-terminal truncation of residues that are apparently disordered allowed us to determine the X-ray crystallographic structure of Pml1. This demonstrated that it consists mainly of a FHA domain, a fold which has been shown to mediate interactions with phosphothreonine-containing peptides. Using a new sensitive assay based on alternative splice-site choice, we show, however, that mutation of the putative phosphothreonine-binding pocket of Pml1 does not affect pre-mRNA splicing. We have also investigated how Pml1 integrates into the RES complex. Production of recombinant complexes, combined with serial truncation and mutagenesis of their subunits, indicated that Pml1 binds to Snu17, which itself contacts Bud13. This analysis allowed us to demarcate the binding sites involved in the formation of this assembly. We propose a model of the organization of the RES complex based on these results, and discuss the functional consequences of this architecture.


Asunto(s)
Proteínas Portadoras/química , Empalme del ARN , Ribonucleoproteína Nuclear Pequeña U2/química , Proteínas de Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Proteínas Portadoras/metabolismo , Secuencia Conservada , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Fosfotreonina/química , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Sitios de Empalme de ARN , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sulfatos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...