Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Biol ; 512: 70-88, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38729405

RESUMEN

In the zebrafish lateral line, non-sensory supporting cells readily re-enter the cell cycle to generate new hair cells and supporting cells during homeostatic maintenance and following damage to hair cells. This contrasts with supporting cells from mammalian vestibular and auditory sensory epithelia which rarely re-enter the cell cycle, and hence loss of hair cells results in permanent sensory deficit. Lateral line supporting cells are derived from multipotent progenitor cells that migrate down the trunk midline as a primordium and are deposited to differentiate into a neuromast. We have found that we can revert zebrafish support cells back to a migratory progenitor state by pharmacologically altering the signaling environment to mimic that of the migratory primordium, with active Wnt signaling and repressed FGF signaling. The reverted supporting cells migrate anteriorly and posteriorly along the horizontal myoseptum and will re-epithelialize to form an increased number of neuromasts along the midline when the pharmacological agents are removed. These data demonstrate that supporting cells can be readily reprogrammed to a migratory multipotent progenitor state that can form new sensory neuromasts, which has important implications for our understanding of how the lateral line system matures and expands in fish and also suggest avenues for returning mammalian supporting cells back to a proliferative state.


Asunto(s)
Movimiento Celular , Sistema de la Línea Lateral , Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/embriología , Sistema de la Línea Lateral/embriología , Sistema de la Línea Lateral/citología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Vía de Señalización Wnt , Factores de Crecimiento de Fibroblastos/metabolismo , Diferenciación Celular , Células Madre/metabolismo , Células Madre/citología , Transducción de Señal , Reprogramación Celular
2.
G3 (Bethesda) ; 14(5)2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38577978

RESUMEN

Genetic variability significantly contributes to individual differences in skeletal muscle mass; however, the specific genes involved in that process remain elusive. In this study, we examined the role of positional candidates, Rps6ka6 and Pou3f4, of a chromosome X locus, implicated in muscle mass variability in CFW laboratory mice. Histology of hindlimb muscles was studied in CFW male mice carrying the muscle "increasing" allele C (n = 15) or "decreasing" allele T (n = 15) at the peak marker of the locus, rs31308852, and in the Pou3f4y/- and their wild-type male littermates. To study the role of the Rps6ka6 gene, we deleted exon 7 (Rps6ka6-ΔE7) using clustered regularly interspaced palindromic repeats-Cas9 based method in H2Kb myogenic cells creating a severely truncated RSK4 protein. We then tested whether that mutation affected myoblast proliferation, migration, and/or differentiation. The extensor digitorum longus muscle was 7% larger (P < 0.0001) due to 10% more muscle fibers (P = 0.0176) in the carriers of the "increasing" compared with the "decreasing" CFW allele. The number of fibers was reduced by 15% (P = 0.0268) in the slow-twitch soleus but not in the fast-twitch extensor digitorum longus (P = 0.2947) of Pou3f4y/- mice. The proliferation and migration did not differ between the Rps6ka6-ΔE7 and wild-type H2Kb myoblasts. However, indices of differentiation (myosin expression, P < 0.0001; size of myosin-expressing cells, P < 0.0001; and fusion index, P = 0.0013) were significantly reduced in Rps6ka6-ΔE7 cells. This study suggests that the effect of the X chromosome locus on muscle fiber numbers in the fast-twitch extensor digitorum longus is mediated by the Rps6ka6 gene, whereas the Pou3f4 gene affects fiber number in slow-twitch soleus.


Asunto(s)
Músculo Esquelético , Factores del Dominio POU , Proteínas Quinasas S6 Ribosómicas 90-kDa , Animales , Masculino , Ratones , Alelos , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Sitios Genéticos , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Factores del Dominio POU/metabolismo
3.
J Comp Neurol ; 528(12): 1967-1985, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31994726

RESUMEN

During inner ear development, primary auditory neurons named spiral ganglion neurons (SGNs) are surrounded by otic mesenchyme cells, which express the transcription factor Pou3f4. Mutations in Pou3f4 are associated with DFNX2, the most common form of X-linked deafness and typically include developmental malformations of the middle ear and inner ear. It is known that interactions between Pou3f4-expressing mesenchyme cells and SGNs are important for proper axon bundling during development. However, Pou3f4 continues to be expressed through later phases of development, and potential interactions between Pou3f4 and SGNs during this period had not been explored. To address this, we documented Pou3f4 protein expression in the early postnatal mouse cochlea and compared SGNs in Pou3f4 knockout mice and littermate controls. In Pou3f4y/- mice, SGN density begins to decline by the end of the first postnatal week, with approximately 25% of SGNs ultimately lost. This period of SGN loss in Pou3f4y/- cochleae coincides with significant elevations in SGN apoptosis. Interestingly, this period also coincides with the presence of a transient population of Pou3f4-expressing cells around and within the spiral ganglion. To determine if Pou3f4 is normally required for SGN peripheral axon extension into the sensory domain, we used a genetic sparse labeling approach to track SGNs and found no differences compared with controls. We also found that Pou3f4 loss did not lead to changes in the proportions of Type I SGN subtypes. Overall, these data suggest that otic mesenchyme cells may play a role in maintaining SGN populations during the early postnatal period.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Factores del Dominio POU/metabolismo , Ganglio Espiral de la Cóclea/metabolismo , Animales , Supervivencia Celular , Cóclea/citología , Cóclea/crecimiento & desarrollo , Cóclea/metabolismo , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/citología , Ganglio Espiral de la Cóclea/citología , Ganglio Espiral de la Cóclea/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA