Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
medRxiv ; 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37662265

RESUMEN

Obesity is a major public health crisis associated with high mortality rates. Previous genome-wide association studies (GWAS) investigating body mass index (BMI) have largely relied on imputed data from European individuals. This study leveraged whole-genome sequencing (WGS) data from 88,873 participants from the Trans-Omics for Precision Medicine (TOPMed) Program, of which 51% were of non-European population groups. We discovered 18 BMI-associated signals (P < 5 × 10-9). Notably, we identified and replicated a novel low frequency single nucleotide polymorphism (SNP) in MTMR3 that was common in individuals of African descent. Using a diverse study population, we further identified two novel secondary signals in known BMI loci and pinpointed two likely causal variants in the POC5 and DMD loci. Our work demonstrates the benefits of combining WGS and diverse cohorts in expanding current catalog of variants and genes confer risk for obesity, bringing us one step closer to personalized medicine.

2.
Sci Adv ; 9(17): eabm4945, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37126548

RESUMEN

Nononcogenic somatic mutations are thought to be uncommon and inconsequential. To test this, we analyzed 43,693 National Heart, Lung and Blood Institute Trans-Omics for Precision Medicine blood whole genomes from 37 cohorts and identified 7131 non-missense somatic mutations that are recurrently mutated in at least 50 individuals. These recurrent non-missense somatic mutations (RNMSMs) are not clearly explained by other clonal phenomena such as clonal hematopoiesis. RNMSM prevalence increased with age, with an average 50-year-old having 27 RNMSMs. Inherited germline variation associated with RNMSM acquisition. These variants were found in genes involved in adaptive immune function, proinflammatory cytokine production, and lymphoid lineage commitment. In addition, the presence of eight specific RNMSMs associated with blood cell traits at effect sizes comparable to Mendelian genetic mutations. Overall, we found that somatic mutations in blood are an unexpectedly common phenomenon with ancestry-specific determinants and human health consequences.


Asunto(s)
Mutación de Línea Germinal , Hematopoyesis , Humanos , Persona de Mediana Edad , Mutación , Mutación Missense , Fenotipo
3.
Nature ; 616(7958): 755-763, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37046083

RESUMEN

Mutations in a diverse set of driver genes increase the fitness of haematopoietic stem cells (HSCs), leading to clonal haematopoiesis1. These lesions are precursors for blood cancers2-6, but the basis of their fitness advantage remains largely unknown, partly owing to a paucity of large cohorts in which the clonal expansion rate has been assessed by longitudinal sampling. Here, to circumvent this limitation, we developed a method to infer the expansion rate from data from a single time point. We applied this method to 5,071 people with clonal haematopoiesis. A genome-wide association study revealed that a common inherited polymorphism in the TCL1A promoter was associated with a slower expansion rate in clonal haematopoiesis overall, but the effect varied by driver gene. Those carrying this protective allele exhibited markedly reduced growth rates or prevalence of clones with driver mutations in TET2, ASXL1, SF3B1 and SRSF2, but this effect was not seen in clones with driver mutations in DNMT3A. TCL1A was not expressed in normal or DNMT3A-mutated HSCs, but the introduction of mutations in TET2 or ASXL1 led to the expression of TCL1A protein and the expansion of HSCs in vitro. The protective allele restricted TCL1A expression and expansion of mutant HSCs, as did experimental knockdown of TCL1A expression. Forced expression of TCL1A promoted the expansion of human HSCs in vitro and mouse HSCs in vivo. Our results indicate that the fitness advantage of several commonly mutated driver genes in clonal haematopoiesis may be mediated by TCL1A activation.


Asunto(s)
Hematopoyesis Clonal , Células Madre Hematopoyéticas , Animales , Humanos , Ratones , Alelos , Hematopoyesis Clonal/genética , Estudio de Asociación del Genoma Completo , Hematopoyesis/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Mutación , Regiones Promotoras Genéticas
4.
HGG Adv ; 4(1): 100163, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36568030

RESUMEN

Anthropometric traits, measuring body size and shape, are highly heritable and significant clinical risk factors for cardiometabolic disorders. These traits have been extensively studied in genome-wide association studies (GWASs), with hundreds of genome-wide significant loci identified. We performed a whole-exome sequence analysis of the genetics of height, body mass index (BMI) and waist/hip ratio (WHR). We meta-analyzed single-variant and gene-based associations of whole-exome sequence variation with height, BMI, and WHR in up to 22,004 individuals, and we assessed replication of our findings in up to 16,418 individuals from 10 independent cohorts from Trans-Omics for Precision Medicine (TOPMed). We identified four trait associations with single-nucleotide variants (SNVs; two for height and two for BMI) and replicated the LECT2 gene association with height. Our expression quantitative trait locus (eQTL) analysis within previously reported GWAS loci implicated CEP63 and RFT1 as potential functional genes for known height loci. We further assessed enrichment of SNVs, which were monogenic or syndromic variants within loci associated with our three traits. This led to the significant enrichment results for height, whereas we observed no Bonferroni-corrected significance for all SNVs. With a sample size of ∼20,000 whole-exome sequences in our discovery dataset, our findings demonstrate the importance of genomic sequencing in genetic association studies, yet they also illustrate the challenges in identifying effects of rare genetic variants.


Asunto(s)
Exoma , Estudio de Asociación del Genoma Completo , Humanos , Exoma/genética , Índice de Masa Corporal , Sitios de Carácter Cuantitativo/genética , Antropometría , Péptidos y Proteínas de Señalización Intercelular , Proteínas de Ciclo Celular
5.
Am J Hum Genet ; 109(1): 81-96, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34932938

RESUMEN

Large-scale gene sequencing studies for complex traits have the potential to identify causal genes with therapeutic implications. We performed gene-based association testing of blood lipid levels with rare (minor allele frequency < 1%) predicted damaging coding variation by using sequence data from >170,000 individuals from multiple ancestries: 97,493 European, 30,025 South Asian, 16,507 African, 16,440 Hispanic/Latino, 10,420 East Asian, and 1,182 Samoan. We identified 35 genes associated with circulating lipid levels; some of these genes have not been previously associated with lipid levels when using rare coding variation from population-based samples. We prioritize 32 genes in array-based genome-wide association study (GWAS) loci based on aggregations of rare coding variants; three (EVI5, SH2B3, and PLIN1) had no prior association of rare coding variants with lipid levels. Most of our associated genes showed evidence of association among multiple ancestries. Finally, we observed an enrichment of gene-based associations for low-density lipoprotein cholesterol drug target genes and for genes closest to GWAS index single-nucleotide polymorphisms (SNPs). Our results demonstrate that gene-based associations can be beneficial for drug target development and provide evidence that the gene closest to the array-based GWAS index SNP is often the functional gene for blood lipid levels.


Asunto(s)
Exoma , Variación Genética , Estudio de Asociación del Genoma Completo , Lípidos/sangre , Sistemas de Lectura Abierta , Alelos , Glucemia/genética , Estudios de Casos y Controles , Biología Computacional/métodos , Bases de Datos Genéticas , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Predisposición Genética a la Enfermedad , Genética de Población , Estudio de Asociación del Genoma Completo/métodos , Humanos , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Hígado/patología , Anotación de Secuencia Molecular , Herencia Multifactorial , Fenotipo , Polimorfismo de Nucleótido Simple
6.
Brief Bioinform ; 23(1)2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34882196

RESUMEN

Multiple statistical methods for aggregate association testing have been developed for whole-genome sequencing (WGS) data. Many aggregate variants in a given genomic window and ignore existing knowledge to define test regions, resulting in many identified regions not clearly linked to genes, and thus, limiting biological understanding. Functional information from new technologies (such as Hi-C and its derivatives), which can help link enhancers to their effector genes, can be leveraged to predefine variant sets for aggregate testing in WGS data. Here, we propose the eSCAN (scan the enhancers) method for genome-wide assessment of enhancer regions in sequencing studies, combining the advantages of dynamic window selection in SCANG (SCAN the Genome), a previously developed method, with the advantages of incorporating putative regulatory regions from annotation. eSCAN, by searching in putative enhancers, increases statistical power and aids mechanistic interpretation, as demonstrated by extensive simulation studies. We also apply eSCAN for blood cell traits using NHLBI Trans-Omics for Precision Medicine WGS data. Results from real data analysis show that eSCAN is able to capture more significant signals, and these signals are of shorter length (indicating higher resolution fine-mapping capability) and drive association of larger regions detected by other methods.


Asunto(s)
Estudio de Asociación del Genoma Completo , Genoma , Estudio de Asociación del Genoma Completo/métodos , Genómica , Secuencias Reguladoras de Ácidos Nucleicos , Secuenciación Completa del Genoma/métodos
7.
Am J Epidemiol ; 190(10): 1977-1992, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33861317

RESUMEN

Genotype-phenotype association studies often combine phenotype data from multiple studies to increase statistical power. Harmonization of the data usually requires substantial effort due to heterogeneity in phenotype definitions, study design, data collection procedures, and data-set organization. Here we describe a centralized system for phenotype harmonization that includes input from phenotype domain and study experts, quality control, documentation, reproducible results, and data-sharing mechanisms. This system was developed for the National Heart, Lung, and Blood Institute's Trans-Omics for Precision Medicine (TOPMed) program, which is generating genomic and other -omics data for more than 80 studies with extensive phenotype data. To date, 63 phenotypes have been harmonized across thousands of participants (recruited in 1948-2012) from up to 17 studies per phenotype. Here we discuss challenges in this undertaking and how they were addressed. The harmonized phenotype data and associated documentation have been submitted to National Institutes of Health data repositories for controlled access by the scientific community. We also provide materials to facilitate future harmonization efforts by the community, which include 1) the software code used to generate the 63 harmonized phenotypes, enabling others to reproduce, modify, or extend these harmonizations to additional studies, and 2) the results of labeling thousands of phenotype variables with controlled vocabulary terms.


Asunto(s)
Estudios de Asociación Genética/métodos , Fenómica/métodos , Medicina de Precisión/métodos , Agregación de Datos , Humanos , Difusión de la Información , National Heart, Lung, and Blood Institute (U.S.) , Fenotipo , Evaluación de Programas y Proyectos de Salud , Estados Unidos
8.
Nat Commun ; 12(1): 2182, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33846329

RESUMEN

Autosomal genetic analyses of blood lipids have yielded key insights for coronary heart disease (CHD). However, X chromosome genetic variation is understudied for blood lipids in large sample sizes. We now analyze genetic and blood lipid data in a high-coverage whole X chromosome sequencing study of 65,322 multi-ancestry participants and perform replication among 456,893 European participants. Common alleles on chromosome Xq23 are strongly associated with reduced total cholesterol, LDL cholesterol, and triglycerides (min P = 8.5 × 10-72), with similar effects for males and females. Chromosome Xq23 lipid-lowering alleles are associated with reduced odds for CHD among 42,545 cases and 591,247 controls (P = 1.7 × 10-4), and reduced odds for diabetes mellitus type 2 among 54,095 cases and 573,885 controls (P = 1.4 × 10-5). Although we observe an association with increased BMI, waist-to-hip ratio adjusted for BMI is reduced, bioimpedance analyses indicate increased gluteofemoral fat, and abdominal MRI analyses indicate reduced visceral adiposity. Co-localization analyses strongly correlate increased CHRDL1 gene expression, particularly in adipose tissue, with reduced concentrations of blood lipids.


Asunto(s)
Factores de Riesgo Cardiometabólico , Cromosomas Humanos X/genética , Lípidos/sangre , Proteínas del Ojo/metabolismo , Femenino , Regulación de la Expresión Génica , Estudios de Asociación Genética , Sitios Genéticos , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Proteínas del Tejido Nervioso/metabolismo , Fenómica , Polimorfismo de Nucleótido Simple/genética , Tejido Subcutáneo/metabolismo , Secuenciación Completa del Genoma
10.
Nature ; 586(7831): 763-768, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33057201

RESUMEN

Age is the dominant risk factor for most chronic human diseases, but the mechanisms through which ageing confers this risk are largely unknown1. The age-related acquisition of somatic mutations that lead to clonal expansion in regenerating haematopoietic stem cell populations has recently been associated with both haematological cancer2-4 and coronary heart disease5-this phenomenon is termed clonal haematopoiesis of indeterminate potential (CHIP)6. Simultaneous analyses of germline and somatic whole-genome sequences provide the opportunity to identify root causes of CHIP. Here we analyse high-coverage whole-genome sequences from 97,691 participants of diverse ancestries in the National Heart, Lung, and Blood Institute Trans-omics for Precision Medicine (TOPMed) programme, and identify 4,229 individuals with CHIP. We identify associations with blood cell, lipid and inflammatory traits that are specific to different CHIP driver genes. Association of a genome-wide set of germline genetic variants enabled the identification of three genetic loci associated with CHIP status, including one locus at TET2 that was specific to individuals of African ancestry. In silico-informed in vitro evaluation of the TET2 germline locus enabled the identification of a causal variant that disrupts a TET2 distal enhancer, resulting in increased self-renewal of haematopoietic stem cells. Overall, we observe that germline genetic variation shapes haematopoietic stem cell function, leading to CHIP through mechanisms that are specific to clonal haematopoiesis as well as shared mechanisms that lead to somatic mutations across tissues.


Asunto(s)
Hematopoyesis Clonal/genética , Predisposición Genética a la Enfermedad , Genoma Humano/genética , Secuenciación Completa del Genoma , Adulto , África/etnología , Anciano , Anciano de 80 o más Años , Población Negra/genética , Autorrenovación de las Células/genética , Proteínas de Unión al ADN/genética , Dioxigenasas , Femenino , Mutación de Línea Germinal/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Persona de Mediana Edad , National Heart, Lung, and Blood Institute (U.S.) , Fenotipo , Medicina de Precisión , Proteínas Proto-Oncogénicas/genética , Proteínas de Motivos Tripartitos/genética , Estados Unidos , alfa Carioferinas/genética
11.
Nat Genet ; 52(9): 969-983, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32839606

RESUMEN

Large-scale whole-genome sequencing studies have enabled the analysis of rare variants (RVs) associated with complex phenotypes. Commonly used RV association tests have limited scope to leverage variant functions. We propose STAAR (variant-set test for association using annotation information), a scalable and powerful RV association test method that effectively incorporates both variant categories and multiple complementary annotations using a dynamic weighting scheme. For the latter, we introduce 'annotation principal components', multidimensional summaries of in silico variant annotations. STAAR accounts for population structure and relatedness and is scalable for analyzing very large cohort and biobank whole-genome sequencing studies of continuous and dichotomous traits. We applied STAAR to identify RVs associated with four lipid traits in 12,316 discovery and 17,822 replication samples from the Trans-Omics for Precision Medicine Program. We discovered and replicated new RV associations, including disruptive missense RVs of NPC1L1 and an intergenic region near APOC1P1 associated with low-density lipoprotein cholesterol.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Genoma/genética , LDL-Colesterol/genética , Simulación por Computador , Estudio de Asociación del Genoma Completo/métodos , Humanos , Modelos Genéticos , Anotación de Secuencia Molecular/métodos , Fenotipo , Secuenciación Completa del Genoma/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...