Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Bioessays ; 43(10): e2100141, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34319621

RESUMEN

In vertebrates, single cell analyses of replication timing patterns brought to light a very well controlled program suggesting a tight regulation on initiation sites. Mapping of replication origins with different methods has revealed discrete preferential sites, enriched in promoters and potential G-quadruplex motifs, which can aggregate into initiation zones spanning several tens of kilobases (kb). Another characteristic of replication origins is a nucleosome-free region (NFR). A modified yeast strain containing a humanized origin recognition complex (ORC) fires new origins at NFRs revealing their regulatory role. In cooperation with NFRs, the histone variant H2A.Z facilitates ORC loading through di-methylation of lysine 20 of histone H4. Recent studies using genome editing methods show that efficient initiation sites associated with transcriptional activity can synergize over several tens of kb by establishing physical contacts and lead to the formation of early domains of DNA replication demonstrating a co-regulation between replication initiation and transcription.


Asunto(s)
Complejo de Reconocimiento del Origen , Origen de Réplica , Animales , Cromatina , Replicación del ADN/genética , Nucleosomas , Complejo de Reconocimiento del Origen/genética , Complejo de Reconocimiento del Origen/metabolismo , Origen de Réplica/genética , Vertebrados/genética , Vertebrados/metabolismo
2.
EMBO J ; 39(21): e99520, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32935369

RESUMEN

Vertebrate genomes replicate according to a precise temporal program strongly correlated with their organization into A/B compartments. Until now, the molecular mechanisms underlying the establishment of early-replicating domains remain largely unknown. We defined two minimal cis-element modules containing a strong replication origin and chromatin modifier binding sites capable of shifting a targeted mid-late-replicating region for earlier replication. The two origins overlap with a constitutive or a silent tissue-specific promoter. When inserted side-by-side, these modules advance replication timing over a 250 kb region through the cooperation with one endogenous origin located 30 kb away. Moreover, when inserted at two chromosomal sites separated by 30 kb, these two modules come into close physical proximity and form an early-replicating domain establishing more contacts with active A compartments. The synergy depends on the presence of the active promoter/origin. Our results show that clustering of strong origins located at active promoters can establish early-replicating domains.


Asunto(s)
Momento de Replicación del ADN , Replicación del ADN , Regiones Promotoras Genéticas , Actinas/genética , Sitios de Unión , Cromatina , Cromosomas , Análisis por Conglomerados , Epigenómica , Humanos , Origen de Réplica , Globinas beta/genética
3.
Nucleic Acids Res ; 47(10): 5114-5125, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-30916335

RESUMEN

The replication program of vertebrate genomes is driven by the chromosomal distribution and timing of activation of tens of thousands of replication origins. Genome-wide studies have shown the association of origins with promoters and CpG islands, and their enrichment in G-quadruplex motifs (G4). However, the genetic determinants driving their activity remain poorly understood. To gain insight on the constraints operating on origins, we conducted the first evolutionary comparison of origins across vertebrates. We generated a genome-wide map of chicken origins (the first of a bird genome), and performed a comparison with human and mouse maps. The analysis of intra-species polymorphism revealed a strong depletion of genetic diversity at the core of replication initiation loci. This depletion is not linked to the presence of G4 motifs, promoters or CpG islands. In contrast, we show that origins experienced a rapid turnover during vertebrate evolution, since pairwise comparisons of origin maps revealed that <24% of them are conserved among vertebrates. This study unravels the existence of a novel determinant of origins, the precise functional role of which remains to be determined. Despite the importance of replication initiation for the fitness of organisms, the distribution of origins along vertebrate chromosomes is highly flexible.


Asunto(s)
Islas de CpG , Replicación del ADN , Genoma , Origen de Réplica , Animales , Pollos , G-Cuádruplex , Células HeLa , Humanos , Células K562 , Ratones , Polimorfismo Genético , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados , Especificidad de la Especie
4.
Nat Struct Mol Biol ; 26(1): 58-66, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30598553

RESUMEN

Common fragile sites (CFSs) are loci that are hypersensitive to replication stress and hotspots for chromosomal rearrangements in cancers. CFSs replicate late in S phase, are cell-type specific and nest in large genes. The relative impact of transcription-replication conflicts versus a low density in initiation events on fragility is currently debated. Here we addressed the relationships between transcription, replication, and instability by manipulating the transcription of endogenous large genes in chicken and human cells. We found that inducing low transcription with a weak promoter destabilized large genes, whereas stimulating their transcription with strong promoters alleviated instability. Notably, strong promoters triggered a switch to an earlier replication timing, supporting a model in which high transcription levels give cells more time to complete replication before mitosis. Transcription could therefore contribute to maintaining genome integrity, challenging the dominant view that it is exclusively a threat.


Asunto(s)
Inestabilidad Genómica/genética , Transcripción Genética/genética , Animales , Sitios Frágiles del Cromosoma/genética , Sitios Frágiles del Cromosoma/fisiología , Replicación del ADN/genética , Replicación del ADN/fisiología , Inestabilidad Genómica/fisiología , Humanos , Mitosis/genética , Mitosis/fisiología
5.
Hum Mol Genet ; 21(18): 4060-72, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22706278

RESUMEN

Frataxin deficiency results in mitochondrial dysfunction and oxidative stress and it is the cause of the hereditary neurodegenerative disease Friedreich ataxia (FA). Here, we present evidence that one of the pleiotropic effects of oxidative stress in frataxin-deficient yeast cells (Δyfh1 mutant) is damage to nuclear DNA and that repair requires the Apn1 AP-endonuclease of the base excision repair pathway. Major phenotypes of Δyfh1 cells are respiratory deficit, disturbed iron homeostasis and sensitivity to oxidants. These phenotypes are weak or absent under anaerobiosis. We show here that exposure of anaerobically grown Δyfh1 cells to oxygen leads to down-regulation of antioxidant defenses, increase in reactive oxygen species, delay in G1- and S-phases of the cell cycle and damage to mitochondrial and nuclear DNA. Nuclear DNA lesions in Δyfh1 cells are primarily caused by oxidized bases and single-strand breaks that can be detected 15-30 min after oxygen exposition. The Apn1 enzyme is essential for the repair of the DNA lesions in Δyfh1 cells. Compared with Δyfh1, the double Δyfh1Δapn1 mutant shows growth impairment, increased mutagenesis and extreme sensitivity to H(2)O(2). On the contrary, overexpression of the APN1 gene in Δyfh1 cells decreases spontaneous and induced mutagenesis. Our results show that frataxin deficiency in yeast cells leads to increased DNA base oxidation and requirement of Apn1 for repair, suggesting that DNA damage and repair could be important features in FA disease progression.


Asunto(s)
Enzimas Reparadoras del ADN/fisiología , ADN de Hongos/genética , Endodesoxirribonucleasas/fisiología , Proteínas de Unión a Hierro/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/enzimología , Alquilantes/farmacología , Anaerobiosis , Antioxidantes/metabolismo , Apoptosis , Puntos de Control del Ciclo Celular , Roturas del ADN de Doble Cadena , Reparación del ADN , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , ADN de Hongos/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Ataxia de Friedreich/genética , Expresión Génica , Regulación Fúngica de la Expresión Génica , Glutatión/metabolismo , Humanos , Peróxido de Hidrógeno/farmacología , Proteínas de Unión a Hierro/genética , Metilmetanosulfonato/farmacología , Viabilidad Microbiana , Mutagénesis/efectos de los fármacos , Oxidantes/farmacología , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Frataxina
6.
FEBS Lett ; 586(2): 143-8, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22155640

RESUMEN

Friedreich ataxia is the most common recessive neurodegenerative disease and is caused by reduced expression of mitochondrial frataxin. Frataxin depletion causes impairment in iron-sulfur cluster and heme biosynthesis, disruption of iron homeostasis and hypersensitivity to oxidants. Currently no pharmacological treatment blocks disease progression, although antioxidant therapies proved to benefit patients. We show that sensitivity of yeast frataxin-deficient cells to hydrogen peroxide is partially mediated by the metacaspase. Metacaspase deletion in frataxin-deficient cells results in recovery of antioxidant capacity and heme synthesis. In addition, our results suggest that metacaspase is associated with mitochondrial respiration, intracellular redox control and genomic stability.


Asunto(s)
Caspasas/genética , Proteínas de Unión a Hierro/genética , Estrés Oxidativo/genética , Saccharomyces cerevisiae/genética , Caspasas/metabolismo , Caspasas/fisiología , Respiración de la Célula/genética , Relación Dosis-Respuesta a Droga , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiología , Inestabilidad Genómica/genética , Glutatión/metabolismo , Humanos , Peróxido de Hidrógeno/farmacología , Proteínas de Unión a Hierro/fisiología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/fisiología , Organismos Modificados Genéticamente , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Levaduras/enzimología , Levaduras/genética , Levaduras/crecimiento & desarrollo , Levaduras/metabolismo , Frataxina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA