Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Immunol Methods ; 525: 113603, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38147898

RESUMEN

CAR-T cells are T cells expressing a chimeric antigen receptor (CAR) rendering them capable of killing tumor cells after recognition of a target antigen. CD19 CAR-T cells have revolutionized the treatment of hematological malignancies. Their function is typically assessed by cytotoxicity assays using human allogeneic cell lines expressing the target antigen CD19 such as Nalm-6. However, an alloreactive reaction is observed with these cells, leading to a CD19-independent killing. To address this issue, we developed a fluorescence microscopy-based potency assay using murine target cells to provide an optimized cytotoxicity assay with enhanced specificity towards CD19. Murine NIH/3T3 (3T3) fibroblast-derived cell line and EL4 T-cell lymphoma-derived cell line were used as targets (no xenoreactivity was observed after coculture with human T cells). 3T3 and EL4 cells were engineered to express eGFP (enhanced Green Fluorescent Protein) and CD19 or CD22 using retroviral vectors. CD19 CAR-T cells and non-transduced (NT) control T cells were produced from several donors. After 4 h or 24 h, alloreactive cytotoxicity against CD19+ Nalm-6-GFP cells and CD19- Jurkat-GFP cells was observed with NT or CAR-T cells. In the same conditions, CAR-T but not NT cells specifically killed CD19+ but not CD19- 3T3-GFP or EL4-GFP cells. Both microscope- and flow cytometry-based assays revealed as sensitive as impedance-based assay. Using flow cytometry, we could further determine that CAR-T cells had mostly a stem cell-like memory phenotype after contact with EL4 target cells. Therefore, CD19+ 3T3-GFP or EL4-GFP cells and fluorescence microscopy- or flow cytometry-based assays provide convenient, sensitive and specific tools to evaluate CAR-T cell function with no alloreactivity.


Asunto(s)
Receptores Quiméricos de Antígenos , Ratones , Animales , Humanos , Receptores Quiméricos de Antígenos/genética , Inmunoterapia Adoptiva , Pruebas Inmunológicas , Activación de Linfocitos , Antígenos CD19/genética
2.
J Exp Clin Cancer Res ; 42(1): 260, 2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37803448

RESUMEN

BACKGROUND: In the era of personalized medicine, the establishment of preclinical models of cancer that faithfully recapitulate original tumors is essential to potentially guide clinical decisions. METHODS: We established 7 models [4 cell lines, 2 Patient-Derived Tumor Organoids (PDTO) and 1 Patient-Derived Xenograft (PDX)], all derived from the same Ovarian Clear Cell Carcinoma (OCCC). To determine the relevance of each of these models, comprehensive characterization was performed based on morphological, histological, and transcriptomic analyses as well as on the evaluation of their response to the treatments received by the patient. These results were compared to the clinical data. RESULTS: Only the PDX and PDTO models derived from the patient tumor were able to recapitulate the patient tumor heterogeneity. The patient was refractory to carboplatin, doxorubicin and gemcitabine, while tumor cell lines were sensitive to these treatments. In contrast, PDX and PDTO models displayed resistance to the 3 drugs. The transcriptomic analysis was consistent with these results since the models recapitulating faithfully the clinical response grouped together away from the other classical 2D cell culture models. We next investigated the potential of drugs that have not been used in the patient clinical management and we identified the HDAC inhibitor belinostat as a potential effective treatment based on PDTO response. CONCLUSIONS: PDX and PDTO appear to be the most relevant models, but only PDTO seem to present all the necessary prerequisites for predictive purposes and could constitute relevant tools for therapeutic decision support in the context of these particularly aggressive cancers refractory to conventional treatments.


Asunto(s)
Carcinoma , Organoides , Humanos , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Resultado del Tratamiento
3.
Front Oncol ; 13: 1220459, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37719019

RESUMEN

Chondrosarcomas and osteosarcomas are malignant bone tumors with a poor prognosis when unresectable or metastasized. Moreover, radiotherapy and chemotherapy could be ineffective. MiRNAs represent an alternative therapeutic approach. Based on high-throughput functional screening, we identified four miRNAs with a potential antiproliferative effect on SW1353 chondrosarcoma cells. Individual functional validations were then performed in SW1353 cells, as well as in three osteosarcoma cell lines. The antiproliferative and cytotoxic effects of miRNAs were evaluated in comparison with a positive control, miR-342-5p. The cytotoxic effect of four selected miRNAs was not confirmed on SW1353 cells, but we unambiguously revealed that miR-4270 had a potent cytotoxic effect on HOS and MG-63 osteosarcoma cell lines, but not on SaOS-2 cell line. Furthermore, like miR-342-5p, miR-4270 induced apoptosis in these two cell lines. In addition, we provided the first report of Bcl-xL as a direct target of miR-4270. MiR-4270 also decreased the expression of the anti-apoptotic protein Mcl-1, and increased the expression of the pro-apoptotic protein Bak. Our findings demonstrated that miR-4270 has tumor suppressive activity in osteosarcoma cells, particularly through Bcl-xL downregulation.

4.
Environ Mol Mutagen ; 64(3): 176-186, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36757094

RESUMEN

Air pollutants include many compounds among them oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs). As they are suspected to generate DNA damage and mutagenicity, an understanding of their mode of action could highlight a carcinogenic potential risk in exposed population. In this article, a prospective study on seven oxy-PAHs selected in terms of occurrence in the environment was conducted on mutagenicity, genotoxicity, and cytotoxicity potentials using in vitro assays including Ames test on five strains, kinetic analysis of cytotoxicity and apoptosis, phosphorylation of histone H2AX, and p53 induction assays on human lung cell line BEAS-2B. Ames test demonstrated that mutagenicity pattern depended on the oxy-PAH tested. Except for BAQ, all oxy-PAHs tested gave mutagenic effect, in the absence and/or in the presence of metabolic activation (S9 fraction). At 24 h of exposure, the majority of oxy-PAHs induced γ-H2AX in BEAS-2B cells and/or phosphorylation of p53 at serine 15 and cell death at highest tested concentrations. Although 9,10-AQ and B[b]FO were mutagenic in bacteria, they failed to induce any of the other genotoxicity biomarkers. In comparison with the benzo[a]pyrene, all oxy-PAHs were less potent in terms of genotoxic potential at the same concentration. These results highlighted the genotoxic and mutagenic potential of these oxy-PAHs and provide preliminary information concerning their possible mechanism of action for toxicity, contributing to a better evaluation of the real associated health risks for human and environment.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Humanos , Hidrocarburos Policíclicos Aromáticos/toxicidad , Cinética , Estudios Prospectivos , Proteína p53 Supresora de Tumor/genética , Mutágenos/toxicidad , Mutágenos/análisis , Daño del ADN , Pruebas de Mutagenicidad/métodos
5.
Org Biomol Chem ; 19(41): 8968-8987, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34596646

RESUMEN

In the area of cancer research, the development of new and potent inhibitors of anti-apoptotic proteins is a very active and promising topic. The small molecule MIM1 has been reported earlier as one of the first selective inhibitors of the anti-apoptotic protein Mcl-1. In the present paper, we first revised the structure of this molecule based on extensive physicochemical analyses. Then we designed and synthesized a focused library of analogues for the corrected structure of MIM1. Next, these molecules were subjected to a panel of in cellulo biological studies, allowing the identification of dual Bcl-xL/Mcl-1 inhibitors, as well as selective Mcl-1 inhibitors. These results have been complemented by fluorescence polarization assays with the Mcl-1 protein. Preliminary structure-activity relationships were discussed and extensive molecular modelling studies allowed us to propose a rationale for the biological activity of this series of new inhibitors, in particular for the selectivity of inhibition of Mcl-1 versus Bcl-xL.


Asunto(s)
Proteína 1 de la Secuencia de Leucemia de Células Mieloides
6.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34360718

RESUMEN

Besides the direct effects of radiations, indirect effects are observed within the surrounding non-irradiated area; irradiated cells relay stress signals in this close proximity, inducing the so-called radiation-induced bystander effect. These signals received by neighboring unirradiated cells induce specific responses similar with those of direct irradiated cells. To understand the cellular response of bystander cells, we performed a 2D gel-based proteomic study of the chondrocytes receiving the conditioned medium of low-dose irradiated chondrosarcoma cells. The conditioned medium was directly analyzed by mass spectrometry in order to identify candidate bystander factors involved in the signal transmission. The proteomic analysis of the bystander chondrocytes highlighted 20 proteins spots that were significantly modified at low dose, implicating several cellular mechanisms, such as oxidative stress responses, cellular motility, and exosomes pathways. In addition, the secretomic analysis revealed that the abundance of 40 proteins in the conditioned medium of 0.1 Gy irradiated chondrosarcoma cells was significantly modified, as compared with the conditioned medium of non-irradiated cells. A large cluster of proteins involved in stress granules and several proteins involved in the cellular response to DNA damage stimuli were increased in the 0.1 Gy condition. Several of these candidates and cellular mechanisms were confirmed by functional analysis, such as 8-oxodG quantification, western blot, and wound-healing migration tests. Taken together, these results shed new lights on the complexity of the radiation-induced bystander effects and the large variety of the cellular and molecular mechanisms involved, including the identification of a new potential actor, namely the stress granules.


Asunto(s)
Neoplasias Óseas/metabolismo , Efecto Espectador/efectos de la radiación , Condrocitos/metabolismo , Condrosarcoma/metabolismo , Gránulos Citoplasmáticos/metabolismo , Proteómica , Rayos X , Neoplasias Óseas/radioterapia , Línea Celular Tumoral , Condrosarcoma/radioterapia , Humanos
7.
Cancers (Basel) ; 13(16)2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34439123

RESUMEN

The identification of miRNAs' targets and associated regulatory networks might allow the definition of new strategies using drugs whose association mimics a given miRNA's effects. Based on this assumption we devised a multi-omics approach to precisely characterize miRNAs' effects. We combined miR-491-5p target affinity purification, RNA microarray, and mass spectrometry to perform an integrated analysis in ovarian cancer cell lines. We thus constructed an interaction network that highlighted highly connected hubs being either direct or indirect targets of miR-491-5p effects: the already known EGFR and BCL2L1 but also EP300, CTNNB1 and several small-GTPases. By using different combinations of specific inhibitors of these hubs, we could greatly enhance their respective cytotoxicity and mimic the miR-491-5p-induced phenotype. Our methodology thus constitutes an interesting strategy to comprehensively study the effects of a given miRNA. Moreover, we identified targets for which pharmacological inhibitors are already available for a clinical use or in clinical trials. This study might thus enable innovative therapeutic options for ovarian cancer, which remains the leading cause of death from gynecological malignancies in developed countries.

8.
Int J Mol Sci ; 22(11)2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34070455

RESUMEN

Chondrosarcomas are malignant bone tumors. Their abundant cartilage-like extracellular matrix and their hypoxic microenvironment contribute to their resistance to chemotherapy and radiotherapy, and no effective therapy is currently available. MicroRNAs (miRNAs) may be an interesting alternative in the development of therapeutic options. Here, for the first time in chondrosarcoma cells, we carried out high-throughput functional screening using impedancemetry, and identified five miRNAs with potential antiproliferative or chemosensitive effects on SW1353 chondrosarcoma cells. The cytotoxic effects of miR-342-5p and miR-491-5p were confirmed on three chondrosarcoma cell lines, using functional validation under normoxia and hypoxia. Both miRNAs induced apoptosis and miR-342-5p also induced autophagy. Western blots and luciferase reporter assays identified for the first time Bcl-2 as a direct target of miR-342-5p, and also Bcl-xL as a direct target of both miR-342-5p and miR-491-5p in chondrosarcoma cells. MiR-491-5p also inhibited EGFR expression. Finally, only miR-342-5p induced cell death on a relevant 3D chondrosarcoma organoid model under hypoxia that mimics the in vivo microenvironment. Altogether, our results revealed the tumor suppressive activity of miR-342-5p, and to a lesser extent of miR-491-5p, on chondrosarcoma lines. Through this study, we also confirmed the potential of Bcl-2 family members as therapeutic targets in chondrosarcomas.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/genética , Neoplasias Óseas/metabolismo , Condrosarcoma/metabolismo , MicroARNs/farmacología , Organoides/metabolismo , Microambiente Tumoral/genética , Autofagia/genética , Neoplasias Óseas/genética , Ciclo Celular/genética , Hipoxia de la Célula/genética , Línea Celular Tumoral , Proliferación Celular/genética , Condrocitos/metabolismo , Condrosarcoma/genética , Cisplatino/farmacología , Receptores ErbB/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Organoides/citología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína bcl-X/metabolismo
9.
Mol Oncol ; 15(12): 3659-3678, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34160887

RESUMEN

Ovarian cancer (OC) is the leading cause of death in patients with gynecologic cancers. Due to late diagnosis and resistance to chemotherapy, the 5-year survival rate in patients with OC is below 40%. We observed that UCA1, a lncRNA previously reported to play an oncogenic role in several malignancies, is overexpressed in the chemoresistant OC cell line OAW42-R compared to their chemotherapy-sensitive counterpart OAW42. Additionally, UCA1 overexpression was related to poor prognosis in two independent patient cohorts. Currently, the molecular mechanisms through which UCA1 acts in OC are poorly understood. We demonstrated that downregulation of the short isoform of UCA1 sensitized OC cells to cisplatin and that UCA1 acted as competing endogenous RNA to miR-27a-5p. Upon UCA1 downregulation, miR-27a-5p downregulated its direct target UBE2N leading to the upregulation of BIM, a proapoptotic protein of the Bcl2 family. The upregulation of BIM is the event responsible for the sensitization of OC cells to cisplatin. In order to model response to therapy in patients with OC, we used several patient-derived organoid cultures, a model faithfully mimicking patient's response to therapy. Inhibition of UBE2N sensitized patient-derived organoids to platinum salts. In conclusion, response to treatment in patients with OC is regulated by the UCA1/miR-27a-5p/UBE2N axis, where UBE2N inhibition could potentially represent a novel therapeutic strategy to counter chemoresistance in OC.


Asunto(s)
MicroARNs , Neoplasias Ováricas , ARN Largo no Codificante , Línea Celular Tumoral , Proliferación Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo
10.
Cell Death Dis ; 11(5): 380, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32424251

RESUMEN

Ovarian cancer represents the first cause of mortality from gynecologic malignancies due to frequent chemoresistance occurrence. Increasing the [BH3-only Bim, Puma, Noxa proapoptotic]/[Bcl-xL, Mcl-1 antiapoptotic] proteins ratio was proven to efficiently kill ovarian carcinoma cells and development of new molecules to imbalance Bcl-2 member equilibrium are strongly required. Drug repurposing constitutes an innovative approach to rapidly develop therapeutic strategies through exploitation of established drugs already approved for the treatment of noncancerous diseases. This strategy allowed a renewed interest for Naftopidil, an α1-adrenergic receptor antagonist commercialized in Japan for benign prostatic hyperplasia. Naftopidil was reported to decrease the incidence of prostate cancer and its derivative was described to increase BH3-only protein expression in some cancer models. Based on these arguments, we evaluated the effects of Naftopidil on ovarian carcinoma and showed that Naftopidil reduced cell growth and increased the expression of the BH3-only proteins Bim, Puma and Noxa. This effect was independent of α1-adrenergic receptors blocking and involved ATF4 or JNK pathway depending on cellular context. Finally, Naftopidil-induced BH3-only members sensitized our models to ABT-737 and Trametinib treatments, in vitro as well as ex vivo, in patient-derived organoid models.


Asunto(s)
Compuestos de Bifenilo/farmacología , Naftalenos/farmacología , Nitrofenoles/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Piperazinas/farmacología , Piridonas/farmacología , Pirimidinonas/farmacología , Sulfonamidas/farmacología , Proteína bcl-X/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Femenino , Humanos , Quinasas de Proteína Quinasa Activadas por Mitógenos/efectos de los fármacos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Proteína bcl-X/metabolismo
11.
Mol Cancer Ther ; 19(7): 1506-1519, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32371581

RESUMEN

Novel therapeutic strategies are urgently required for the clinical management of chemoresistant ovarian carcinoma, which is the most lethal of the gynecologic malignancies. miRNAs hold promise because they play a critical role in determining the cell phenotype by regulating several hundreds of targets, which could constitute vulnerabilities of cancer cells. A combination of gain-of-function miRNA screening and real-time continuous cell monitoring allows the identification of miRNAs with robust cytotoxic effects in chemoresistant ovarian cancer cells. Focusing on miR-3622b-5p, we show that it induces apoptosis in several ovarian cancer cell lines by both directly targeting Bcl-xL and EGFR-mediating BIM upregulation. miR-3622b-5p also sensitizes cells to cisplatin by inhibiting Bcl-xL in ovarian cancer cell lines escaping BIM induction. miR-3622b-5p also exerts antimigratory capacities by targeting both LIMK1 and NOTCH1. These wide-ranging antitumor properties of miR-3622b-5p in ovarian cancer cells are mimicked by the associations of pharmacologic inhibitors targeting these proteins. The combination of an EGFR inhibitor together with a BH3-mimetic molecule induced a large decrease in cell viability in a panel of ovarian cancer cell lines and several ovarian patient-derived tumor organoids, suggesting the value of pursuing such a combination therapy in ovarian carcinoma. Altogether, our work highlights the potential of phenotype-based miRNA screening approaches to identify lethal interactions which might lead to new drug combinations and clinically applicable strategies.


Asunto(s)
Antineoplásicos/farmacología , Biomarcadores de Tumor/genética , Cisplatino/farmacología , Regulación Neoplásica de la Expresión Génica , MicroARNs/administración & dosificación , MicroARNs/genética , Neoplasias Ováricas/terapia , Apoptosis , Movimiento Celular , Proliferación Celular , Terapia Combinada , Femenino , Humanos , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Células Tumorales Cultivadas
12.
J Cell Commun Signal ; 13(3): 343-356, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30903603

RESUMEN

While the dose-response relationship of radiation-induced bystander effect (RIBE) is controversial at low and high linear energy transfer (LET), mechanisms and effectors of cell-to-cell communication stay unclear and highly dependent of cell type. In the present study, we investigated the capacity of chondrocytes in responding to bystander factors released by chondrosarcoma cells irradiated at different doses (0.05 to 8 Gy) with X-rays and C-ions. Following a medium transfer protocol, cell survival, proliferation and DNA damages were quantified in bystander chondrocytes. The bystander factors secreted by chondrosarcoma cells were characterized. A significant and major RIBE response was observed in chondrocyte cells (T/C-28a2) receiving conditioned medium from chondrosarcoma cells (SW1353) irradiated with 0.1 Gy of X-rays and 0.05 Gy of C-ions, resulting in cell survivals of 36% and 62%, respectively. Micronuclei induction in bystander cells was observed from the same low doses. The cell survival results obtained by clonogenic assays were confirmed using impedancemetry. The bystander activity was vanished after a heat treatment or a dilution of the conditioned media. The cytokines which are well known as bystander factors, TNF-α and IL-6, were increased as a function of doses and LET according to an ELISA multiplex analysis. Together, the results demonstrate that irradiated chondrosarcoma cells can communicate stress factors to non-irradiated chondrocytes, inducing a wide and specific bystander response related to both doses and LET.

13.
Eur J Med Chem ; 159: 357-380, 2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30308410

RESUMEN

Protein-protein interactions are attractive targets because they control numerous cellular processes. In oncology, apoptosis regulating Bcl-2 family proteins are of particular interest. Apoptotic cell death is controlled via PPIs between the anti-apoptotic proteins hydrophobic groove and the pro-apoptotic proteins BH3 domain. In ovarian carcinoma, it has been previously demonstrated that Bcl-xL and Mcl-1 cooperate to protect tumor cells against apoptosis. Moreover, Mcl-1 is a key regulator of cancer cell survival and is a known resistance factor to Bcl-2/Bcl-xL pharmacological inhibitors making it an attractive therapeutic target. Here, using a structure-guided design from the oligopyridine lead Pyridoclax based on Noxa/Mcl-1 interaction we identified a new derivative, active at lower concentration as compared to Pyridoclax. This new derivative selectively binds to the Mcl-1 hydrophobic groove and releases Bak and Bim from Mcl-1 to induce cell death and sensitize cancer cells to Bcl-2/Bcl-xL targeting strategies.


Asunto(s)
Diseño de Fármacos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Piridinas/farmacología , Muerte Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Estructura Molecular , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/química , Unión Proteica , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/química , Piridinas/síntesis química , Piridinas/química , Relación Estructura-Actividad , Células Tumorales Cultivadas , Proteína bcl-X/antagonistas & inhibidores , Proteína bcl-X/metabolismo
14.
Cancer Lett ; 432: 103-111, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-29883750

RESUMEN

In this study, we investigated the anticancer efficacy of pegylated liposomes containing 6BrCaQ, an hsp90 inhibitor derived from novobiocin. 6BrCaQ has been previously identified as the most potent compound in a series of quinoleic novobiocin analogs but is poorly water-soluble. We investigated, for the first time, the anti-proliferative effects of this drug in vivo in an orthotopic breast cancer model (MDA-MB-231 luc) using pegylated liposomes to allow its administration. Hsp90, hsp70 and hsp27 protein and mRNA expressions were not strongly affected after treatment meaning it did not induce a heat shock response often associated with resistance and poor prognosis. Liposomal delivery of 6BrCaQ retarded tumor growth at a low dose (1 mg/kg, injected once a week for 4 weeks). Histological analysis of tumors revealed necrosis and a lower proportion of proliferative cells in treated mice indicating that this drug has potential for breast cancer therapy when encapsulated in liposomes.


Asunto(s)
Antineoplásicos/farmacología , Liposomas/administración & dosificación , Quinolonas/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Animales , Apoptosis , Ciclo Celular , Proliferación Celular , Femenino , Humanos , Liposomas/química , Ratones , Ratones Desnudos , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Oncol Rep ; 38(4): 1949-1958, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28791387

RESUMEN

Ovarian cancer is the leading cause of death from gynecological malignancies worldwide, and innate or acquired chemoresistance of ovarian cancer cells is the major cause of therapeutic failure. It has been demonstrated that the concomitant inhibition of Bcl-xL and Mcl-1 anti-apoptotic activities is able to trigger apoptosis in chemoresistant ovarian cancer cells. In this context, siRNA-mediated Bcl­xL and Mcl-1 inhibition constitutes an appealing strategy by which to eliminate chemoresistant cancer cells. However, the safest and most efficient way to vectorize siRNAs in vivo is still under debate. In the present study, using in vivo bioluminescence imaging, we evaluated the interest of atelocollagen to vectorize siRNAs by intraperitoneal (i.p.) or intravenous (i.v.) administration in 2 xenografted ovarian cancer models (peritoneal carcinomatosis and subcutaneous tumors in nude mice). Whereas i.p. administration of atelocollagen-vectorized siRNA in the peritoneal carcinomatosis model did not induce any gene downregulation, a 70% transient downregulation of luciferase expression was achieved after i.v. injection of atelocollagen-vectorized siRNA in the subcutaneous (s.c.) model. However, the use of siRNA targeting Bcl-xL or Mcl-1 did not induce target-specific downregulation in vivo in nude mice. Our results therefore show that atelocollagen complex formulation, the administration route, tumor site and the identity of the siRNA target influence the efficiency of atelocollagen­mediated siRNA delivery.


Asunto(s)
Carcinoma/terapia , Colágeno/administración & dosificación , Neoplasias Ováricas/terapia , ARN Interferente Pequeño/administración & dosificación , Animales , Carcinoma/diagnóstico por imagen , Carcinoma/genética , Línea Celular Tumoral , Femenino , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Humanos , Luciferasas/genética , Mediciones Luminiscentes/métodos , Ratones , Ratones Desnudos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/genética , Distribución Aleatoria , Transfección , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína bcl-X/genética
16.
PLoS Negl Trop Dis ; 10(4): e0004605, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27111140

RESUMEN

Our knowledge and control of the pathogenesis induced by the filariae remain limited due to experimental obstacles presented by parasitic nematode biology and the lack of selective prophylactic or curative drugs. Here we thought to investigate the role of neutrophils in the host innate immune response to the infection caused by the Litomosoides sigmodontis murine model of human filariasis using mice harboring a gain-of-function mutation of the chemokine receptor CXCR4 and characterized by a profound blood neutropenia (Cxcr4(+/1013)). We provided manifold evidence emphasizing the major role of neutrophils in the control of the early stages of infection occurring in the skin. Firstly, we uncovered that the filarial parasitic success was dramatically decreased in Cxcr4(+/1013) mice upon subcutaneous delivery of the infective stages of filariae (infective larvae, L3). This protection was linked to a larger number of neutrophils constitutively present in the skin of the mutant mice herein characterized as compared to wild type (wt) mice. Indeed, the parasitic success in Cxcr4(+/1013) mice was normalized either upon depleting neutrophils, including the pool in the skin, or bypassing the skin via the intravenous infection of L3. Second, extending these observations to wt mice we found that subcutaneous delivery of L3 elicited an increase of neutrophils in the skin. Finally, living L3 larvae were able to promote in both wt and mutant mice, an oxidative burst response and the release of neutrophil extracellular traps (NET). This response of neutrophils, which is adapted to the large size of the L3 infective stages, likely directly contributes to the anti-parasitic strategies implemented by the host. Collectively, our results are demonstrating the contribution of neutrophils in early anti-filarial host responses through their capacity to undertake different anti-filarial strategies such as oxidative burst, degranulation and NETosis.


Asunto(s)
Filariasis/patología , Filariasis/parasitología , Filarioidea/inmunología , Inmunidad Innata , Neutrófilos/inmunología , Piel/patología , Piel/parasitología , Animales , Modelos Animales de Enfermedad , Filarioidea/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/inmunología , Procedimientos de Reducción del Leucocitos , Ratones , Receptores CXCR4/genética , Receptores CXCR4/metabolismo
17.
Oncotarget ; 7(28): 44719-44734, 2016 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-26992233

RESUMEN

As with miRNAs a decade ago, the scientific community recently understood that lncRNAs represent a new layer of complexity in the regulation of gene expression. Although only a subset of lncRNAs has been functionally characterized, it is clear that they are deeply involved in the most critical physiological and pathological biological processes. This review shows that in ovarian carcinoma, data already available testify to the importance of lncRNAs and that the demonstration of an ever-growing role of lncRNAs in the biology of this malignancy can be expected from future studies. We also underline the importance of their relationship with associated protein partners and miRNAs. Together, the available information suggests that the emerging field of lncRNAs will pave the way for a better understanding of ovarian cancer biology and might lead to the development of innovative therapeutic approaches. Moreover, lncRNAs expression signatures either alone or in combination with other types of markers (miRNAs, mRNAs, proteins) could prove useful to predict outcome or treatment follow-up in order to improve the therapeutic care of ovarian carcinoma patients.


Asunto(s)
Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Ováricas/genética , ARN Largo no Codificante/genética , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , MicroARNs/genética , Modelos Genéticos , ARN Mensajero/genética
18.
J Med Chem ; 58(4): 1644-68, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-25585174

RESUMEN

Apoptosis control defects such as the deregulation of Bcl-2 family member expression are frequently involved in chemoresistance. In ovarian carcinoma, we previously demonstrated that Bcl-xL and Mcl-1 cooperate to protect cancer cells against apoptosis and their concomitant inhibition leads to massive apoptosis even in the absence of chemotherapy. Whereas Bcl-xL inhibitors are now available, Mcl-1 inhibition, required to sensitize cells to Bcl-xL-targeting strategies, remains problematic. In this context, we designed and synthesized oligopyridines potentially targeting the Mcl-1 hydrophobic pocket, evaluated their capacity to inhibit Mcl-1 in live cells, and implemented a functional screening assay to evaluate their ability to sensitize ovarian carcinoma cells to Bcl-xL-targeting strategies. We established structure-activity relationships and focused our attention on MR29072, named Pyridoclax. Surface plasmon resonance assay demonstrated that pyridoclax directly binds to Mcl-1. Without cytotoxic activity when administered as a single agent, pyridoclax induced apoptosis in combination with Bcl-xL-targeting siRNA or with ABT-737 in ovarian, lung, and mesothelioma cancer cells.


Asunto(s)
Terapia Molecular Dirigida , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/antagonistas & inhibidores , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Piridinas/farmacología , Proteína bcl-X/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Modelos Moleculares , Estructura Molecular , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Neoplasias Ováricas/patología , Piridinas/síntesis química , Piridinas/química , Relación Estructura-Actividad Cuantitativa , Teoría Cuántica , Células Tumorales Cultivadas , Proteína bcl-X/metabolismo
19.
Apoptosis ; 20(4): 535-50, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25627260

RESUMEN

Ovarian carcinoma is the leading cause of death from gynecologic cancer in the developed world and is characterized by acquired chemoresistance leading to an overall 5-year survival rate of about 30 %. We previously showed that Bcl-xL and Mcl-1 cooperatively protect platinum-resistant ovarian cancer cells from apoptosis. Despite BH3-mimetics represent promising drugs to target Bcl-xL, anti-Mcl-1 strategies are still in pre-clinical studies and required new investigations. Calcium is a universal second messenger and dysregulation of calcium signal is often observed during carcinogenesis. As change in cytosolic free calcium concentration [Ca(2+)]i is known to control the fate of the cell by regulating Bcl-2 family members, we wonder if calcium signal could impact on Mcl-1 expression and if its pharmacological inhibition could be useful to sensitize ovarian carcinoma cells to anti-Bcl-xL strategies. We therefore studied the effect of different calcium signals inhibitors in ovarian carcinoma cell lines SKOV3 and IGROV1-R10 and analysed their effects on proliferation and Mcl-1 expression. We also exposed these cells to these inhibitors in combination with anti-Bcl-xL strategies (siRNA or BH3-mimetic: ABT-737). We found that calcium signaling regulates Mcl-1 through translational events and a calmodulin-mediated pathway. BAPTA-AM and calmodulin inhibitor combination with ABT-737 leads to apoptosis, a process that is reversed by Mcl-1 enforced expression. As Mcl-1 represents a crucial hurdle to the success of chemotherapy, these results could open to new area of investigation using calcium modulators to directly or indirectly target Mcl-1 and thus efficiently sensitize ovarian carcinoma cells to anti-Bcl-xL strategies.


Asunto(s)
Calcio/metabolismo , Carcinoma/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Neoplasias Ováricas/metabolismo , Proteína bcl-X/antagonistas & inhibidores , Apoptosis , Señalización del Calcio , Carcinoma/genética , Carcinoma/fisiopatología , Línea Celular Tumoral , Regulación hacia Abajo , Femenino , Humanos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Neoplasias Ováricas/genética , Neoplasias Ováricas/fisiopatología , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
20.
Cancer Lett ; 348(1-2): 38-49, 2014 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-24650799

RESUMEN

We previously showed that Bcl-xL and Mcl-1 cooperatively protect platinum-resistant ovarian cancer cells from apoptosis. Here we assessed the anticancer potential of combining ABT-737-induced inhibition of Bcl-xL with Mcl-1 inhibition via PI3K/Akt/mTOR pathway disruption using NVP-BEZ235. NVP-BEZ235 inhibited cell proliferation without inducing apoptosis. It strongly repressed Mcl-1 expression and induced Puma expression in both cell lines tested while differentially modulating Bim between the two. Interestingly, NVP-BEZ235 efficiently sensitized ovarian carcinoma cells to ABT-737, provided that Bim expression was induced. Moreover, inhibiting the ERK1/2 pathway restored Bim expression and sensitized low Bim-expressing cancer cells to the BEZ235/ABT-737 treatment.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de la Membrana/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/antagonistas & inhibidores , Neoplasias Ováricas/enzimología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Proteína bcl-X/antagonistas & inhibidores , Proteínas Reguladoras de la Apoptosis/genética , Proteína 11 Similar a Bcl2 , Compuestos de Bifenilo/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Imidazoles/farmacología , Proteínas de la Membrana/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Nitrofenoles/farmacología , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Fosfatidilinositol 3-Quinasa/metabolismo , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Quinolinas/farmacología , Interferencia de ARN , Transducción de Señal/efectos de los fármacos , Sulfonamidas/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Factores de Tiempo , Transfección , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...