Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Sci Technol ; 86(9): 2045-2058, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36378165

RESUMEN

A modelling study is under way in preparation for a planned upgrade of the capacity of the kwaMashu WWTP in eThekwini, South Africa, from 50 to 80 ML/d. When the configuration of an existing plant is to be changed, the most critical part of the model calibration is the influent wastewater fractionation. However, the constantly varying characteristics of wastewater make experimental determination of an adequately representative set of components difficult, time-consuming and expensive, which constitutes significant barriers to the adoption of modelling by many municipalities. Compliance and process monitoring generate large sets of influent measurements of chemical oxygen demand (COD), free and saline ammonia (FSA), total suspended solids (TSS), etc., but these are insufficient for modelling purposes. In particular, biodegradability is not routinely measured. However, since influent fractionation is designed to predict the fate of material in the wastewater treatment process, it should be possible to infer the fractionation from a combination of influent and plant measurements. This case study demonstrates the application of a pair of modelling tools, a probabilistic influent fractionator and a simplified steady­state plant­wide model, to estimate the influent fractionation, together with certain unmeasured or unreliable operational parameters.


Asunto(s)
Aguas Residuales , Purificación del Agua , Análisis de la Demanda Biológica de Oxígeno , Eliminación de Residuos Líquidos , Aguas del Alcantarillado/análisis
2.
Sci Total Environ ; 822: 153678, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35131239

RESUMEN

This study presents an extensive plant-wide model-based assessment of four alternative activated sludge (AS) configurations for biological nitrogen (N) and phosphorus (P) removal under uncertain influent loads and characteristics. Zeekoegat wastewater treatment plant (WWTP) in South Africa was chosen as case study due to its flexible design that enables operation in four different AS configurations: 3-stage Bardenpho (A2O), University of Cape Town (UCT), UCT modified (UCTM), and Johannesburg (JHB). A metamodeling based global sensitivity analysis was performed on a steady-state plant-wide simulation model using Activated Sludge Model No. 2d with the latest extension of physico-chemical processes describing the plant-wide P transformations. The simulation results showed that the predictions of effluent chemical oxygen demand (COD), N and P using the proposed approach fall within the interquartile range of measured data. The study also revealed that process configuration can affect: 1) how influent uncertainty is reflected in model predictions for effluent quality and cost related performances, and 2) the parameter rankings based on variance decomposition, particularly for effluent phosphate, sludge disposal and methane production. The results identified UCT and UCTM as more robust configurations for P removal (less propagated uncertainty and less sensitivity to N load) in the expense of incomplete denitrification. Moreover, based on the results of Monte-Carlo based scenario analysis, the balanced SRT for N and P removal is more sensitive to influent load variation/uncertainty for the A2O and JHB configurations. This gives a more operational flexibility to UCT and UCTM, where a narrow SRT range can ensure both N and P removal.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Reactores Biológicos , Nitrógeno , Nutrientes , Fósforo/química , Aguas del Alcantarillado/química , Sudáfrica , Incertidumbre , Eliminación de Residuos Líquidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...