Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Genes (Basel) ; 14(12)2023 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-38137048

RESUMEN

Single cell RNAseq has been a big leap in many areas of biology. Rather than investigating gene expression on a whole organism level, this technology enables scientists to get a detailed look at rare single cells or within their cell population of interest. The field is growing, and many new methods appear each year. We compared methods utilized in our core facility: Smart-seq3, PlexWell, FLASH-seq, VASA-seq, SORT-seq, 10X, Evercode, and HIVE. We characterized the equipment requirements for each method. We evaluated the performances of these methods based on detected features, transcriptome diversity, mitochondrial RNA abundance and multiplets, among others and benchmarked them against bulk RNA sequencing. Here, we show that bulk transcriptome detects more unique transcripts than any single cell method. While most methods are comparable in many regards, FLASH-seq and VASA-seq yielded the best metrics, e.g., in number of features. If no equipment for automation is available or many cells are desired, then HIVE or 10X yield good results. In general, more recently developed methods perform better. This also leads to the conclusion that older methods should be phased out, and that the development of single cell RNAseq methods is still progressing considerably.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Humanos , Transcriptoma/genética , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos
2.
Int J Mol Sci ; 24(19)2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37833911

RESUMEN

After kidney transplantation (KT), donor-specific hyporesponsiveness (DSH) of recipient T cells develops over time. Recently, apoptosis was identified as a possible underlying mechanism. In this study, both transcriptomic profiles and complete V(D)J variable regions of TR transcripts from individual alloreactive T cells of kidney transplant recipients were determined with single-cell RNA sequencing. Alloreactive T cells were identified by CD137 expression after stimulation of peripheral blood mononuclear cells obtained from KT recipients (N = 7) prior to and 3-5 years after transplantation with cells of their donor or a third party control. The alloreactive T cells were sorted, sequenced and the transcriptome and T cell receptor profiles were analyzed using unsupervised clustering. Alloreactive T cells retain a highly polyclonal T Cell Receptor Alpha/Beta repertoire over time. Post transplantation, donor-reactive CD4+ T cells had a specific downregulation of genes involved in T cell cytokine-mediated pathways and apoptosis. The CD8+ donor-reactive T cell profile did not change significantly over time. Single-cell expression profiling shows that activated and pro-apoptotic donor-reactive CD4+ T cell clones are preferentially lost after transplantation in stable kidney transplant recipients.


Asunto(s)
Trasplante de Riñón , Trasplante de Riñón/efectos adversos , Leucocitos Mononucleares , Receptores de Antígenos de Linfocitos T , Apoptosis , Análisis de Secuencia de ARN
3.
Sci Immunol ; 8(85): eadg3917, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37418545

RESUMEN

Memory T cells provide long-lasting defense responses through their ability to rapidly reactivate, but how they efficiently "recall" an inflammatory transcriptional program remains unclear. Here, we show that human CD4+ memory T helper 2 (TH2) cells carry a chromatin landscape synergistically reprogrammed at both one-dimensional (1D) and 3D levels to accommodate recall responses, which is absent in naive T cells. In memory TH2 cells, recall genes were epigenetically primed through the maintenance of transcription-permissive chromatin at distal (super)enhancers organized in long-range 3D chromatin hubs. Precise transcriptional control of key recall genes occurred inside dedicated topologically associating domains ("memory TADs"), in which activation-associated promoter-enhancer interactions were preformed and exploited by AP-1 transcription factors to promote rapid transcriptional induction. Resting memory TH2 cells from patients with asthma showed premature activation of primed recall circuits, linking aberrant transcriptional control of recall responses to chronic inflammation. Together, our results implicate stable multiscale reprogramming of chromatin organization as a key mechanism underlying immunological memory and dysfunction in T cells.


Asunto(s)
Cromatina , Regulación de la Expresión Génica , Humanos , Cromatina/genética , Factores de Transcripción/genética , Regiones Promotoras Genéticas
4.
Genes (Basel) ; 14(3)2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36980900

RESUMEN

Functional perturbation and action mechanism studies have shown that the transcription factor Zeb2 controls cell fate decisions, differentiation, and/or maturation in multiple cell lineages in embryos and after birth. In cultured embryonic stem cells (ESCs), Zeb2's mRNA/protein upregulation is necessary for the exit from primed pluripotency and for entering general and neural differentiation. We edited mouse ESCs to produce Flag-V5 epitope-tagged Zeb2 protein from one endogenous allele. Using chromatin immunoprecipitation coupled with sequencing (ChIP-seq), we mapped 2432 DNA-binding sites for this tagged Zeb2 in ESC-derived neuroprogenitor cells (NPCs). A new, major binding site maps promoter-proximal to Zeb2 itself. The homozygous deletion of this site demonstrates that autoregulation of Zeb2 is necessary to elicit the appropriate Zeb2-dependent effects in ESC-to-NPC differentiation. We have also cross-referenced all the mapped Zeb2 binding sites with previously obtained transcriptome data from Zeb2 perturbations in ESC-derived NPCs, GABAergic interneurons from the ventral forebrain of mouse embryos, and stem/progenitor cells from the post-natal ventricular-subventricular zone (V-SVZ) in mouse forebrain, respectively. Despite the different characteristics of each of these neurogenic systems, we found interesting target gene overlaps. In addition, our study also contributes to explaining developmental disorders, including Mowat-Wilson syndrome caused by ZEB2 deficiency, and also other monogenic syndromes.


Asunto(s)
Neuronas , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc , Animales , Ratones , Sitios de Unión , ADN/química , ADN/metabolismo , Homocigoto , Neuronas/metabolismo , Neuronas/patología , Eliminación de Secuencia , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/metabolismo , Células Madre Embrionarias de Ratones/metabolismo
5.
Eur J Cancer ; 177: 33-44, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36323051

RESUMEN

BACKGROUND: Metastatic castration-resistant prostate cancer (mCRPC) patients with positive AR-V7 expression in their circulating tumour cells (CTCs) rarely derive benefit from abiraterone and enzalutamide. DESIGN: We performed a prospective, multicenter, single arm phase II clinical trial (CABA-V7) in mCRPC patients previously treated with docetaxel and androgen deprivation therapy. OBJECTIVE: In this trial, we investigated whether cabazitaxel treatment resulted in clinically meaningful PSA response rates in patients with positive CTC-based AR-V7 expression and collected liquid biopsies for genomic profiling. RESULTS: Cabazitaxel was found to be modestly effective, with only 12% of these patients obtaining a PSA response. Genomic profiling revealed that CTC-based AR-V7 expression was not associated with other known mCRPC-associated alterations. CTC-based AR-V7 status and dichotomised CTC counts were observed as independent prognostic markers at baseline. CONCLUSIONS: AR-V7 positivity predicted poor overall survival (OS). However, cabazitaxel-treated AR-V7 positive patients and those lacking AR-V7 positivity, who received cabazitaxel as standard of care, appeared to have similar OS. Therefore, despite the low response rate, cabazitaxel may still be an effective treatment in this poor prognosis, AR-V7 positive patient population.


Asunto(s)
Células Neoplásicas Circulantes , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/patología , Antígeno Prostático Específico , Receptores Androgénicos/metabolismo , Antagonistas de Andrógenos/uso terapéutico , Isoformas de Proteínas/genética , Células Neoplásicas Circulantes/patología , Nitrilos/uso terapéutico
6.
BMC Nutr ; 8(1): 93, 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36038938

RESUMEN

BACKGROUND: Natural enrichment of sn-2 palmitate content of infant formulae by using bovine milk fat is known to reduce formation of faecal fatty acid soaps and to improve stool consistency, but effects on gut microbiota composition are unknown. The purpose of this study was to test the influence of milk fat-based formula high in sn-2 palmitate on the infants' gut microbiota composition and to confirm the beneficial effects of the formula on formation of faecal fatty acid soaps and stool consistency. METHODS: Twenty-two healthy term, formula-fed infants were enrolled in a single-blinded randomized, crossover, placebo-controlled trial. After a 2-week run-in period, infants received either a 50% milk fat-based formula containing 39% sn-2 palmitate (MF) or a vegetable fat-based formula (VF) containing 10% sn-2 palmitate in a 2 × 2-week crossover design. Faecal microbiota composition was the primary outcome of the study. Other outcomes included faecal fatty acid soap excretion, calcium excretion, gut comfort parameters and faecal metabolites. RESULTS: Microbiota analysis showed that bifidobacteria dominated the gut microbiota of most infants. Neither alpha- nor beta-diversity was significantly influenced by the intervention. Also, abundance of metabolic pathways was independent of the intervention. The MF formula resulted in significantly lower faecal levels of palmitic acid soap (p = 0.0002) and total fatty acid soaps (p = 0.0001) than the VF formula. Additionally, calcium excretion and palmitic acid concentration were significantly (p = 0.0335) lower in stool samples after MF intervention. Furthermore, a significant physiological effect on softer stools was observed in the MF intervention compared to the VF intervention (p = 0.02). Of the 870 measured faecal metabolites, 190 were significantly different after MF and VF intervention (FDR corrected p < 0.05). Most of these were found at higher levels after MF intervention, potentially indicative of the complex structure of milk fat. Metabolites with more than twofold change between interventions were mostly lipid-derived and included several milk fat-specific fatty acids. CONCLUSIONS: Replacing part of the vegetable fat in infant formula with bovine milk fat with high sn-2 palmitate levels did not change the microbiota composition, although a reduction in faecal palmitate soaps, total fatty acid soaps and calcium excretion while improving stool consistency in the MF intervention was confirmed. In addition, 190 faecal metabolites were significantly different, many related to the fat source. TRIAL REGISTRATION: Netherlands Trial Registry Identifier: NL7815 19/06/2019.

7.
Sci Rep ; 12(1): 12835, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35896673

RESUMEN

The formation of the synovial joint begins with the visible emergence of a stripe of densely packed mesenchymal cells located between distal ends of the developing skeletal anlagen called the interzone. Recently the transcriptome of the early synovial joint was reported. Knowledge about enhancers would complement these data and lead to a better understanding of the control of gene transcription at the onset of joint development. Using ChIP-sequencing we have mapped the H3-signatures H3K27ac and H3K4me1 to locate regulatory elements specific for the interzone and adjacent phalange, respectively. This one-stage atlas of candidate enhancers (CEs) was used to map the association between these respective joint tissue specific CEs and biological processes. Subsequently, integrative analysis of transcriptomic data and CEs identified new putative regulatory elements of genes expressed in interzone (e.g., GDF5, BMP2 and DACT2) and phalange (e.g., MATN1, HAPLN1 and SNAI1). We also linked such CEs to genes known as crucial in synovial joint hypermobility and osteoarthritis, as well as phalange malformations. These analyses show that the CE atlas can serve as resource for identifying, and as starting point for experimentally validating, putative disease-causing genomic regulatory regions in patients with synovial joint dysfunctions and/or phalange disorders, and enhancer-controlled synovial joint and phalange formation.


Asunto(s)
Osteoartritis , Transcriptoma , Proteínas Adaptadoras Transductoras de Señales , Extremidades , Humanos , Articulaciones , Secuencias Reguladoras de Ácidos Nucleicos
8.
Methods Mol Biol ; 2453: 231-259, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35622330

RESUMEN

With the advent of next-generation sequencing (NGS) methodologies, the total repertoires of B and T cells can be disclosed in much more detail than ever before. Even though many of these strategies do provide in-depth and high-resolution information of the immunoglobulin (IG) and/or T-cell receptor (TR) repertoire, one clear disadvantage is that the IG/TR profiles cannot be connected to individual cells. Single-cell technologies do allow to study the IG/TR repertoire at the individual cell level. This is especially relevant in cell samples in which much heterogeneity of the cell population is expected. By combining the IG/TR repertoire with transcriptome data, the reactivity of the B or T cell can be associated with activation or maturation stages. An additional advantage of such single-cell technologies is that the combination of both IG and both TR chains can be studied on a per cell basis, which better reflects the antigen receptor reactivity of cells. Here we present the ICELL8 single-cell method for the parallel analysis of the TR repertoire and transcriptome, which is especially useful in samples that contain relatively few cells.


Asunto(s)
Receptores de Antígenos de Linfocitos T alfa-beta , Transcriptoma , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Inmunoglobulinas/genética , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T alfa-beta/genética
9.
Neuro Oncol ; 24(12): 2133-2145, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-35639831

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most aggressive primary brain tumor. Its cellular composition is very heterogeneous, with cells exhibiting stem-cell characteristics (GSCs) that co-determine therapy resistance and tumor recurrence. Bone Morphogenetic Protein (BMP)-4 promotes astroglial and suppresses oligodendrocyte differentiation in GSCs, processes associated with superior patient prognosis. We characterized variability in cell viability of patient-derived GBM cultures in response to BMP4 and, based on single-cell transcriptome profiling, propose predictive positive and early-response markers for sensitivity to BMP4. METHODS: Cell viability was assessed in 17 BMP4-treated patient-derived GBM cultures. In two cultures, one highly-sensitive to BMP4 (high therapeutic efficacy) and one with low-sensitivity, response to treatment with BMP4 was characterized. We applied single-cell RNA-sequencing, analyzed the relative abundance of cell clusters, searched for and identified the aforementioned two marker types, and validated these results in all 17 cultures. RESULTS: High variation in cell viability was observed after treatment with BMP4. In three cultures with highest sensitivity for BMP4, a substantial new cell subpopulation formed. These cells displayed decreased cell proliferation and increased apoptosis. Neuronal differentiation was reduced most in cultures with little sensitivity for BMP4. OLIG1/2 levels were found predictive for high sensitivity to BMP4. Activation of ribosomal translation (RPL27A, RPS27) was up-regulated within one day in cultures that were very sensitive to BMP4. CONCLUSION: The changes in composition of patient-derived GBM cultures obtained after treatment with BMP4 correlate with treatment efficacy. OLIG1/2 expression can predict this efficacy, and upregulation of RPL27A and RPS27 are useful early-response markers.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioma/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Proliferación Celular , Perfilación de la Expresión Génica , Biomarcadores/metabolismo , ARN/metabolismo , Células Madre Neoplásicas/metabolismo , Diferenciación Celular , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/farmacología , Proteína Morfogenética Ósea 4/metabolismo
10.
Commun Biol ; 5(1): 338, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35396392

RESUMEN

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) have been identified in bacteria, archaea and mitochondria of plants, but not in eukaryotes. Here, we report the discovery of 12,572 putative CRISPRs randomly distributed across the human chromosomes, which we termed hCRISPRs. By using available transcriptome datasets, we demonstrate that hCRISPRs are distinctively expressed as small non-coding RNAs (sncRNAs) in cell lines and human tissues. Moreover, expression patterns thereof enabled us to distinguish normal from malignant tissues. In prostate cancer, we confirmed the differential hCRISPR expression between normal adjacent and malignant primary prostate tissue by RT-qPCR and demonstrate that the SHERLOCK and DETECTR dipstick tools are suitable to detect these sncRNAs. We anticipate that the discovery of CRISPRs in the human genome can be further exploited for diagnostic purposes in cancer and other medical conditions, which certainly will lead to the development of point-of-care tests based on the differential expression of the hCRISPRs.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ARN Pequeño no Traducido , Archaea/genética , Bacterias/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Genoma Humano , Humanos , Masculino
11.
Clin Cancer Res ; 28(12): 2527-2535, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35275197

RESUMEN

PURPOSE: In a post hoc analysis of the CATNON trial (NCT00626990), we explored whether adding temozolomide to radiotherapy improves outcome in patients with IDH1/2 wildtype (wt) anaplastic astrocytomas with molecular features of glioblastoma [redesignated as glioblastoma, isocitrate dehydrogenase-wildtype (IDH-wt) in the 2021 World Health Organization (WHO) classification of central nervous system tumors]. PATIENTS AND METHODS: From the randomized phase III CATNON study examining the addition of adjuvant and concurrent temozolomide to radiotherapy in anaplastic astrocytomas, we selected a subgroup of IDH1/2wt and H3F3Awt tumors with presence of TERT promoter mutations and/or EGFR amplifications and/or combined gain of chromosome 7 and loss of chromosome 10. Molecular abnormalities including MGMT promoter methylation status were determined by next-generation sequencing, DNA methylation profiling, and SNaPshot analysis. RESULTS: Of the 751 patients entered in the CATNON study, 670 had fully molecularly characterized tumors. A total of 159 of these tumors met the WHO 2021 molecular criteria for glioblastoma, IDH-wt. Of these patients, 47 received radiotherapy only and 112 received a combination of radiotherapy and temozolomide. There was no added effect of temozolomide on either overall survival [HR, 1.19; 95% confidence interval (CI), 0.82-1.71] or progression-free survival (HR, 0.87; 95% CI, 0.61-1.24). MGMT promoter methylation was prognostic for overall survival, but was not predictive for outcome to temozolomide treatment either with respect to overall survival or progression-free survival. CONCLUSIONS: In this cohort of patients with glioblastoma, IDH-wt temozolomide treatment did not add benefit beyond that observed from radiotherapy, regardless of MGMT promoter status. These findings require a new well-powered prospective clinical study to explore the efficacy of temozolomide treatment in this patient population.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Antineoplásicos Alquilantes , Astrocitoma/tratamiento farmacológico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Metilación de ADN , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Dacarbazina , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/radioterapia , Humanos , Isocitrato Deshidrogenasa/genética , Estudios Prospectivos , Temozolomida/uso terapéutico
12.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35197278

RESUMEN

Evasion from drug-induced apoptosis is a crucial mechanism of cancer treatment resistance. The proapoptotic protein NOXA marks an aggressive pancreatic ductal adenocarcinoma (PDAC) subtype. To identify drugs that unleash the death-inducing potential of NOXA, we performed an unbiased drug screening experiment. In NOXA-deficient isogenic cellular models, we identified an inhibitor of the transcription factor heterodimer CBFß/RUNX1. By genetic gain and loss of function experiments, we validated that the mode of action depends on RUNX1 and NOXA. Of note is that RUNX1 expression is significantly higher in PDACs compared to normal pancreas. We show that pharmacological RUNX1 inhibition significantly blocks tumor growth in vivo and in primary patient-derived PDAC organoids. Through genome-wide analysis, we detected that RUNX1-loss reshapes the epigenetic landscape, which gains H3K27ac enrichment at the NOXA promoter. Our study demonstrates a previously unknown mechanism of NOXA-dependent cell death, which can be triggered pharmaceutically. Therefore, our data show a way to target a therapy-resistant PDAC, an unmet clinical need.


Asunto(s)
Apoptosis/genética , Carcinoma Ductal Pancreático/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Expresión Génica , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Mutaciones Letales Sintéticas , Carcinoma Ductal Pancreático/patología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/antagonistas & inhibidores , Humanos , Neoplasias Pancreáticas/patología , Regiones Promotoras Genéticas , Regulación hacia Arriba
13.
Sci Rep ; 12(1): 336, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013432

RESUMEN

Haploinsufficiency for the erythroid-specific transcription factor KLF1 is associated with hereditary persistence of fetal hemoglobin (HPFH). Increased HbF ameliorates the symptoms of ß-hemoglobinopathies and downregulation of KLF1 activity has been proposed as a potential therapeutic strategy. However, the feasibility of this approach has been challenged by the observation that KLF1 haploinsufficient individuals with the same KLF1 variant, within the same family, display a wide range of HbF levels. This phenotypic variability is not readily explained by co-inheritance of known HbF-modulating variants in the HBB, HBS1L-MYB and/or BCL11A loci. We studied cultured erythroid progenitors obtained from Maltese individuals in which KLF1 p.K288X carriers display HbF levels ranging between 1.3 and 12.3% of total Hb. Using a combination of gene expression analysis, chromatin accessibility assays and promoter activity tests we find that variation in expression of the wildtype KLF1 allele may explain a significant part of the variability in HbF levels observed in KLF1 haploinsufficiency. Our results have general bearing on the variable penetrance of haploinsufficiency phenotypes and on conflicting interpretations of pathogenicity of variants in other transcriptional regulators such as EP300, GATA2 and RUNX1.


Asunto(s)
Epigénesis Genética , Epigenoma , Epigenómica , Eritroblastos/metabolismo , Haploinsuficiencia , Hemoglobinopatías/genética , Factores de Transcripción de Tipo Kruppel/genética , Células Cultivadas , Secuenciación de Inmunoprecipitación de Cromatina , Eritroblastos/patología , Eritropoyesis/genética , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Predisposición Genética a la Enfermedad , Hemoglobinopatías/sangre , Hemoglobinopatías/diagnóstico , Humanos , Factores de Transcripción de Tipo Kruppel/metabolismo , Malta , Penetrancia , Fenotipo , Cultivo Primario de Células , RNA-Seq
14.
Leukemia ; 36(3): 687-700, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34741119

RESUMEN

MIR139 is a tumor suppressor and is commonly silenced in acute myeloid leukemia (AML). However, the tumor-suppressing activities of miR-139 and molecular mechanisms of MIR139-silencing remain largely unknown. Here, we studied the poorly prognostic MLL-AF9 fusion protein-expressing AML. We show that MLL-AF9 expression in hematopoietic precursors caused epigenetic silencing of MIR139, whereas overexpression of MIR139 inhibited in vitro and in vivo AML outgrowth. We identified novel miR-139 targets that mediate the tumor-suppressing activities of miR-139 in MLL-AF9 AML. We revealed that two enhancer regions control MIR139 expression and found that the polycomb repressive complex 2 (PRC2) downstream of MLL-AF9 epigenetically silenced MIR139 in AML. Finally, a genome-wide CRISPR-Cas9 knockout screen revealed RNA Polymerase 2 Subunit M (POLR2M) as a novel MIR139-regulatory factor. Our findings elucidate the molecular control of tumor suppressor MIR139 and reveal a role for POLR2M in the MIR139-silencing mechanism, downstream of MLL-AF9 and PRC2 in AML. In addition, we confirmed these findings in human AML cell lines with different oncogenic aberrations, suggesting that this is a more common oncogenic mechanism in AML. Our results may pave the way for new targeted therapy in AML.


Asunto(s)
Leucemia Mieloide Aguda/genética , MicroARNs/genética , ARN Polimerasa II/genética , Animales , Carcinogénesis/genética , Línea Celular Tumoral , Epigénesis Genética , Regulación Leucémica de la Expresión Génica , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas de Fusión Oncogénica/genética
15.
Genes (Basel) ; 12(10)2021 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-34680991

RESUMEN

Tracheoesophageal Fistula (TOF) is a congenital anomaly for which the cause is unknown in the majority of patients. OA/TOF is a variable feature in many (often mono-) genetic syndromes. Research using animal models targeting genes involved in candidate pathways often result in tracheoesophageal phenotypes. However, there is limited overlap in the genes implicated by animal models and those found in OA/TOF-related syndromic anomalies. Knowledge on affected pathways in animal models is accumulating, but our understanding on these pathways in patients lags behind. If an affected pathway is associated with both animals and patients, the mechanisms linking the genetic mutation, affected cell types or cellular defect, and the phenotype are often not well understood. The locus heterogeneity and the uncertainty of the exact heritability of OA/TOF results in a relative low diagnostic yield. OA/TOF is a sporadic finding with a low familial recurrence rate. As parents are usually unaffected, de novo dominant mutations seems to be a plausible explanation. The survival rates of patients born with OA/TOF have increased substantially and these patients start families; thus, the detection and a proper interpretation of these dominant inherited pathogenic variants are of great importance for these patients and for our understanding of OA/TOF aetiology.


Asunto(s)
Atresia Esofágica/genética , Asesoramiento Genético , Predisposición Genética a la Enfermedad , Fístula Traqueoesofágica/genética , Atresia Esofágica/epidemiología , Atresia Esofágica/patología , Humanos , Mutación/genética , Factores de Transcripción SOXB1/genética , Tasa de Supervivencia , Fístula Traqueoesofágica/epidemiología , Fístula Traqueoesofágica/patología , Gemelos/genética
16.
Methods Mol Biol ; 2351: 165-179, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34382189

RESUMEN

Targeted chromatin capture (T2C) is a 3C-based method and is used to study the 3D chromatin organization, interactomes and structural changes associated with gene regulation, progression through the cell cycle, and cell survival and development. Low input targeted chromatin capture (low-T2C) is an optimized version of the T2C protocol for low numbers of cells. Here, we describe the protocol for low-T2C, including all experimental steps and bioinformatics tools in detail.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/genética , Biología Computacional/métodos , Cromatina/química , Cromatina/metabolismo , Mapeo Cromosómico , Regulación de la Expresión Génica , Biblioteca de Genes , Genómica/métodos , Reproducibilidad de los Resultados
17.
Blood Adv ; 5(9): 2339-2349, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33938942

RESUMEN

The BCL11A gene encodes a transcriptional repressor with essential functions in multiple tissues during human development. Haploinsufficiency for BCL11A causes Dias-Logan syndrome (OMIM 617101), an intellectual developmental disorder with hereditary persistence of fetal hemoglobin (HPFH). Due to the severe phenotype, disease-causing variants in BCL11A occur de novo. We describe a patient with a de novo heterozygous variant, c.1453G>T, in the BCL11A gene, resulting in truncation of the BCL11A-XL protein (p.Glu485X). The truncated protein lacks the 3 C-terminal DNA-binding zinc fingers and the nuclear localization signal, rendering it inactive. The patient displayed high fetal hemoglobin (HbF) levels (12.1-18.7% of total hemoglobin), in contrast to the parents who had HbF levels of 0.3%. We used cultures of patient-derived erythroid progenitors to determine changes in gene expression and chromatin accessibility. In addition, we investigated DNA methylation of the promoters of the γ-globin genes HBG1 and HBG2. HUDEP1 and HUDEP2 cells were used as models for fetal and adult human erythropoiesis, respectively. Similar to HUDEP1 cells, the patient's cells displayed Assay for Transposase-Accessible Chromatin (ATAC) peaks at the HBG1/2 promoters and significant expression of HBG1/2 genes. In contrast, HBG1/2 promoter methylation and genome-wide gene expression profiling were consistent with normal adult erythropoiesis. We conclude that HPFH is the major erythroid phenotype of constitutive BCL11A haploinsufficiency. Given the essential functions of BCL11A in other hematopoietic lineages and the neuronal system, erythroid-specific targeting of the BCL11A gene has been proposed for reactivation of γ-globin expression in ß-hemoglobinopathy patients. Our data strongly support this approach.


Asunto(s)
Haploinsuficiencia , Proteínas Nucleares , Adulto , Proteínas Portadoras/genética , Humanos , Proteínas Nucleares/genética , Fenotipo , Proteínas Represoras/genética
18.
Neuro Oncol ; 23(9): 1547-1559, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33914057

RESUMEN

BACKGROUND: Survival in patients with IDH1/2-mutant (mt) anaplastic astrocytomas is highly variable. We have used the prospective phase 3 CATNON trial to identify molecular factors related to outcome in IDH1/2mt anaplastic astrocytoma patients. METHODS: The CATNON trial randomized 751 adult patients with newly diagnosed 1p/19q non-codeleted anaplastic glioma to 59.4 Gy radiotherapy +/- concurrent and/or adjuvant temozolomide. The presence of necrosis and/or microvascular proliferation was scored at central pathology review. Infinium MethylationEPIC BeadChip arrays were used for genome-wide DNA methylation analysis and the determination of copy number variations (CNV). Two DNA methylation-based tumor classifiers were used for risk stratification. Next-generation sequencing (NGS) was performed using 1 of the 2 glioma-tailored NGS panels. The primary endpoint was overall survival measured from the date of randomization. RESULTS: Full analysis (genome-wide DNA methylation and NGS) was successfully performed on 654 tumors. Of these, 432 tumors were IDH1/2mt anaplastic astrocytomas. Both epigenetic classifiers identified poor prognosis patients that partially overlapped. A predictive prognostic Cox proportional hazard model identified that independent prognostic factors for IDH1/2mt anaplastic astrocytoma patients included; age, mini-mental state examination score, treatment with concurrent and/or adjuvant temozolomide, the epigenetic classifiers, PDGFRA amplification, CDKN2A/B homozygous deletion, PI3K mutations, and total CNV load. Independent recursive partitioning analysis highlights the importance of these factors for patient prognostication. CONCLUSION: Both clinical and molecular factors identify IDH1/2mt anaplastic astrocytoma patients with worse outcome. These results will further refine the current WHO criteria for glioma classification.


Asunto(s)
Neoplasias Encefálicas , Glioma , Adulto , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Cromosomas Humanos Par 1 , Variaciones en el Número de Copia de ADN , Metilación de ADN , Glioma/genética , Glioma/terapia , Homocigoto , Humanos , Isocitrato Deshidrogenasa/genética , Mutación , Pronóstico , Estudios Prospectivos , Eliminación de Secuencia
19.
Front Pediatr ; 9: 800915, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35186825

RESUMEN

Congenital diaphragmatic hernia (CDH) is a congenital structural anomaly in which the diaphragm has not developed properly. It may occur either as an isolated anomaly or with additional anomalies. It is thought to be a multifactorial disease in which genetic factors could either substantially contribute to or directly result in the developmental defect. Patients with aneuploidies, pathogenic variants or de novo Copy Number Variations (CNVs) impacting specific genes and loci develop CDH typically in the form of a monogenetic syndrome. These patients often have other associated anatomical malformations. In patients without a known monogenetic syndrome, an increased genetic burden of de novo coding variants contributes to disease development. In early years, genetic evaluation was based on karyotyping and SNP-array. Today, genomes are commonly analyzed with next generation sequencing (NGS) based approaches. While more potential pathogenic variants are being detected, analysis of the data presents a bottleneck-largely due to the lack of full appreciation of the functional consequence and/or relevance of the detected variant. The exact heritability of CDH is still unknown. Damaging de novo alterations are associated with the more severe and complex phenotypes and worse clinical outcome. Phenotypic, genetic-and likely mechanistic-variability hampers individual patient diagnosis, short and long-term morbidity prediction and subsequent care strategies. Detailed phenotyping, clinical follow-up at regular intervals and detailed registries are needed to find associations between long-term morbidity, genetic alterations, and clinical parameters. Since CDH is a relatively rare disorder with only a few recurrent changes large cohorts of patients are needed to identify genetic associations. Retrospective whole genome sequencing of historical patient cohorts using will yield valuable data from which today's patients and parents will profit Trio whole genome sequencing has an excellent potential for future re-analysis and data-sharing increasing the chance to provide a genetic diagnosis and predict clinical prognosis. In this review, we explore the pitfalls and challenges in the analysis and interpretation of genetic information, present what is currently known and what still needs further study, and propose strategies to reap the benefits of genetic screening.

20.
J Leukoc Biol ; 2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33289106

RESUMEN

Dendritic cells (DCs) are key immune modulators and are able to mount immune responses or tolerance. DC differentiation and activation imply a plethora of molecular and cellular responses, including transcriptional changes. PU.1 is a highly expressed transcription factor in DCs and coordinates relevant aspects of DC biology. Due to their role as immune regulators, DCs pose as a promising immunotherapy tool. However, some of their functional features, such as survival, activation, or migration, are compromised due to the limitations to simulate in vitro the physiologic DC differentiation process. A better knowledge of transcriptional programs would allow the identification of potential targets for manipulation with the aim of obtaining "qualified" DCs for immunotherapy purposes. Most of the current knowledge regarding DC biology derives from studies using mouse models, which not always find a parallel in human. In the present study, we dissect the PU.1 transcriptional regulome and interactome in mouse and human DCs, in the steady state or LPS activated. The PU.1 transcriptional regulome was identified by performing PU.1 chromatin immunoprecipitation followed by high-throughput sequencing and pairing these data with RNAsequencing data. The PU.1 interactome was identified by performing PU.1 immunoprecipitation followed by mass spectrometry analysis. Our results portray PU.1 as a pivotal factor that plays an important role in the regulation of genes required for proper DC activation and function, and assures the repression of nonlineage genes. The interspecies differences between human and mouse DCs are surprisingly substantial, highlighting the need to study the biology of human DCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...