Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Microorganisms ; 9(1)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445711

RESUMEN

Thermoanaerobacter species have recently been observed to reduce carboxylic acids to their corresponding alcohols. The present investigation shows that Thermoanaerobacter pseudoethanolicus converts C2-C6 short-chain fatty acids (SCFAs) to their corresponding alcohols in the presence of glucose. The conversion yields varied from 21% of 3-methyl-1-butyrate to 57.9% of 1-pentanoate being converted to their corresponding alcohols. Slightly acidic culture conditions (pH 6.5) was optimal for the reduction. By increasing the initial glucose concentration, an increase in the conversion of SCFAs reduced to their corresponding alcohols was observed. Inhibitory experiments on C2-C8 alcohols showed that C4 and higher alcohols are inhibitory to T. pseudoethanolicus suggesting that other culture modes may be necessary to improve the amount of fatty acids reduced to the analogous alcohol. The reduction of SCFAs to their corresponding alcohols was further demonstrated using 13C-labelled fatty acids and the conversion was followed kinetically. Finally, increased activity of alcohol dehydrogenase (ADH) and aldehyde oxidation activity was observed in cultures of T. pseudoethanolicus grown on glucose as compared to glucose supplemented with either 3-methyl-1-butyrate or pentanoate, using both NADH and NADPH as cofactors, although the presence of the latter showed higher ADH and aldehyde oxidoreductase (ALDH) activity.

2.
Bioresour Technol ; 312: 123539, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32447122

RESUMEN

This study investigates the integration of hydrothermal carbonisation (HTC) with anaerobic digestion (AD) as a valorisation route for two macroalgae species; S. latissima (SL) and F. serratus (FS). HTC reactions were conducted at temperatures of 150 °C, 200 °C and 250 °C, with resulting hydrochars, process waters and hydrothermal slurries assessed for biomethane potential yields. Un-treated SL generated similar biomethane levels compared to all SL slurries. Whereas all FS slurries improved biomethane yields compared to un-treated FS. Hydrochars represent a greater energy carrier if used as a solid fuel, rather than a feedstock for anaerobic digestion. Integrating HTC and AD, through hydrochar combustion and process water digestion has a greater energetic output than anaerobic digestion of the un-treated macroalgae. Treatment at 150 °C, with separate utilisation of products, can improve the energetic output of S. latissima and F. serratus by 47% and 172% respectively, compared to digestion of the un-treated macroalgae.


Asunto(s)
Algas Marinas , Anaerobiosis , Carbono , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...