Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
bioRxiv ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38585862

RESUMEN

Postural orthostatic tachycardia syndrome (POTS) is an adrenergic signaling disorder characterized by excessive plasma norepinephrine, postural tachycardia, and syncope. The norepinephrine transporter (NET) modulates adrenergic homeostasis via reuptake of extracellular catecholamines and is implicated in the pathogenesis of adrenergic and neurological disorders. Previous research has outlined that NET activity and trafficking is modulated via reversible post-translational modifications like phosphorylation and ubiquitylation. S-palmitoylation, or the addition of a 16-carbon saturated fatty acid, is another post-translational modification responsible for numerous biological mechanisms. In this study, we reveal that NET is dynamically palmitoylated and inhibition of this modification with the palmitoyl acyltransferase (DHHC) inhibitor, 2-bromopalmitate (2BP), results in decreased NET palmitoylation within 90 min of treatment. This result was followed closely with a reduction in transport capacity, cell surface, and total cellular NET expression after 120 min of treatment. Increasing 2BP concentrations and treatment time revealed a nearly complete loss of total NET protein. Co-expression with individual DHHCs revealed a single DHHC enzyme, DHHC1, promoted WT hNET palmitoylation and elevated NET protein levels. The POTS associated NET mutant, A457P, exhibits dramatically decreased transport capacity and cell surface levels which we have confirmed in the current study. In an attempt to recover A457P NET expression we co-expressed the A457P variant with DHHC1 to drive expression as seen with the WT protein but instead saw an increase in NET N-terminal immuno-detectable fragments. Further investigation of A457P NET palmitoylation and surface expression is necessary, but our preliminary novel findings reveal palmitoylation as a mechanism of NET regulation and suggest that dysregulation of this process may contribute to the pathogenesis of POTS.

2.
Adv Pharmacol ; 99: 1-33, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38467478

RESUMEN

The availability of monoamine neurotransmitters in the brain is under the control of dopamine, norepinephrine, and serotonin transporters expressed on the plasma membrane of monoaminergic neurons. By regulating transmitter levels these proteins mediate crucial functions including cognition, attention, and reward, and dysregulation of their activity is linked to mood and psychiatric disorders of these systems. Amphetamine-based transporter substrates stimulate non-exocytotic transmitter efflux that induces psychomotor stimulation, addiction, altered mood, hallucinations, and psychosis, thus constituting a major component of drug neurochemical and behavioral outcomes. Efflux is under the control of transporter post-translational modifications that synergize with other regulatory events, and this review will summarize our knowledge of these processes and their role in drug mechanisms.


Asunto(s)
Anfetamina , Dopamina , Humanos , Anfetamina/farmacología , Transporte Biológico , Dopamina/metabolismo , Neurotransmisores , Procesamiento Proteico-Postraduccional
3.
ACS Chem Neurosci ; 14(18): 3431-3443, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37644775

RESUMEN

In the central nervous system, serotonergic signaling modulates sleep, mood, and cognitive control. During serotonergic transmission, the synaptic concentration of serotonin is tightly controlled in a spatial and temporal manner by the serotonin transporter (SERT). Dysregulation of this process is implicated in the pathogenesis of major-depressive, obsessive-compulsive, and autism-spectrum disorders, which makes SERT a primary target for prescription therapeutics, most notably selective serotonin reuptake inhibitors (SSRIs). S-Palmitoylation, the reversible addition of a 16-carbon fatty acid to proteins, is an increasingly recognized dynamic post-translational modification responsible for modulating protein kinetics, trafficking, and localization patterns in response to physiologic/cellular stimuli. In this study, we reveal that human SERTs are a target for palmitoylation, and using the irreversible palmitoyl acyltransferase inhibitor 2-bromopalmitate (2BP), we have identified several associated functions. Using a lower dose of 2BP in shorter time frames, inhibition of palmitoylation was associated with reductions in SERT Vmax, without changes in Km or surface expression. With higher doses of 2BP for longer time intervals, inhibition of palmitoylation was consistent with the loss of cell surface and total SERT protein, suggesting palmitoylation is an important mechanism in regulating SERT trafficking and maintenance of SERT protein through biogenic or anti-degradative processes. Additionally, we have identified that treatment with the SSRI escitalopram decreases SERT palmitoylation analogous to 2BP, reducing SERT surface expression and transport capacity. Ultimately, these results reveal that palmitoylation is a major regulatory mechanism for SERT kinetics and trafficking and may be the mechanism responsible for escitalopram-induced internalization and ultimately decreased cellular SERT protein levels.


Asunto(s)
Escitalopram , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Humanos , Lipoilación , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Aciltransferasas
4.
bioRxiv ; 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37214849

RESUMEN

In the central nervous system, serotonergic signaling modulates sleep, mood, and cognitive control. During neuronal transmission, the synaptic concentration of serotonin is tightly controlled in a spatial and temporal manner by the serotonin transporter (SERT). Dysregulation of serotonergic signaling is implicated in the pathogenesis of major-depressive, obsessive-compulsive, and autism-spectrum disorders, which makes SERT a primary target for prescription therapeutics, most notably selective-serotonin reuptake inhibitors (SSRIs). S-palmitoylation is an increasingly recognized dynamic post-translational modification, regulating protein kinetics, trafficking, and localization patterns upon physiologic/cellular stimuli. In this study, we reveal that human SERTs are a target for palmitoylation, and using the irreversible palmitoyl acyl-transferase inhibitor, 2-bromopalmitate (2BP) we have identified several associated functions. Using a lower dose of 2BP in shorter time frames, inhibition of palmitoylation was associated with reductions in SERT V max , without changes in K m or surface expression. With higher doses of 2BP for longer time intervals, inhibition of palmitoylation was consistent with the loss of cell surface and total SERT protein, suggesting palmitoylation is an important mechanism in regulating SERT trafficking and maintenance of SERT protein through biogenic or anti-degradative processes. Additionally, we have identified that treatment with the SSRI escitalopram decreases SERT palmitoylation analogous to 2BP, reducing SERT surface expression and transport capacity. Ultimately, these results reveal palmitoylation is a major regulatory mechanism for SERT kinetics and trafficking and may be the mechanism responsible for escitalopram-induced internalization and loss of total SERT protein.

5.
Nat Commun ; 14(1): 1970, 2023 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-37031257

RESUMEN

Adeno-associated virus (AAV)-based gene therapy could be facilitated by the development of molecular switches to control the magnitude and timing of expression of therapeutic transgenes. RNA interference (RNAi)-based approaches hold unique potential as a clinically proven modality to pharmacologically regulate AAV gene dosage in a sequence-specific manner. We present a generalizable RNAi-based rheostat wherein hepatocyte-directed AAV transgene expression is silenced using the clinically validated modality of chemically modified small interfering RNA (siRNA) conjugates or vectorized co-expression of short hairpin RNA (shRNA). For transgene induction, we employ REVERSIR technology, a synthetic high-affinity oligonucleotide complementary to the siRNA or shRNA guide strand to reverse RNAi activity and rapidly recover transgene expression. For potential clinical development, we report potent and specific siRNA sequences that may allow selective regulation of transgenes while minimizing unintended off-target effects. Our results establish a conceptual framework for RNAi-based regulatory switches with potential for infrequent dosing in clinical settings to dynamically modulate expression of virally-delivered gene therapies.


Asunto(s)
Dependovirus , Terapia Genética , Interferencia de ARN , Dependovirus/genética , Dependovirus/metabolismo , ARN Interferente Pequeño/metabolismo , Transgenes , ARN Bicatenario , Vectores Genéticos/genética
6.
Nucleic Acids Res ; 51(7): e41, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36840708

RESUMEN

A major challenge confronting the clinical application of site-directed RNA editing (SDRE) is the design of small guide RNAs (gRNAs) that can drive efficient editing. Although many gRNA designs have effectively recruited endogenous Adenosine Deaminases that Act on RNA (ADARs), most of them exceed the size of currently FDA-approved antisense oligos. We developed an unbiased in vitro selection assay to identify short gRNAs that promote superior RNA editing of a premature termination codon. The selection assay relies on hairpin substrates in which the target sequence is linked to partially randomized gRNAs in the same molecule, so that gRNA sequences that promote editing can be identified by sequencing. These RNA substrates were incubated in vitro with ADAR2 and the edited products were selected using amplification refractory mutation system PCR and used to regenerate the substrates for a new round of selection. After nine repetitions, hairpins which drove superior editing were identified. When gRNAs of these hairpins were delivered in trans, eight of the top ten short gRNAs drove superior editing both in vitro and in cellula. These results show that efficient small gRNAs can be selected using our approach, an important advancement for the clinical application of SDRE.


Asunto(s)
Edición de ARN , ARN Guía de Sistemas CRISPR-Cas , Secuencia de Bases , Codón sin Sentido , Mutación , Edición de ARN/genética
7.
Nucleic Acids Res ; 50(12): 6656-6670, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35736224

RESUMEN

Preclinical mechanistic studies have pointed towards RNA interference-mediated off-target effects as a major driver of hepatotoxicity for GalNAc-siRNA conjugates. Here, we demonstrate that a single glycol nucleic acid or 2'-5'-RNA modification can substantially reduce small interfering RNA (siRNA) seed-mediated binding to off-target transcripts while maintaining on-target activity. In siRNAs with established hepatotoxicity driven by off-target effects, these novel designs with seed-pairing destabilization, termed enhanced stabilization chemistry plus (ESC+), demonstrated a substantially improved therapeutic window in rats. In contrast, siRNAs thermally destabilized to a similar extent by the incorporation of multiple DNA nucleotides in the seed region showed little to no improvement in rat safety suggesting that factors in addition to global thermodynamics play a role in off-target mitigation. We utilized the ESC+ strategy to improve the safety of ALN-HBV, which exhibited dose-dependent, transient and asymptomatic alanine aminotransferase elevations in healthy volunteers. The redesigned ALN-HBV02 (VIR-2218) showed improved specificity with comparable on-target activity and the program was reintroduced into clinical development.


Asunto(s)
ARN Interferente Pequeño , Animales , Ratas , ARN Interferente Pequeño/genética
8.
Nucleic Acids Res ; 50(3): 1221-1240, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-34268578

RESUMEN

A critical challenge for the successful development of RNA interference-based therapeutics therapeutics has been the enhancement of their in vivo metabolic stability. In therapeutically relevant, fully chemically modified small interfering RNAs (siRNAs), modification of the two terminal phosphodiester linkages in each strand of the siRNA duplex with phosphorothioate (PS) is generally sufficient to protect against exonuclease degradation in vivo. Since PS linkages are chiral, we systematically studied the properties of siRNAs containing single chiral PS linkages at each strand terminus. We report an efficient and simple method to introduce chiral PS linkages and demonstrate that Rp diastereomers at the 5' end and Sp diastereomers at the 3' end of the antisense siRNA strand improved pharmacokinetic and pharmacodynamic properties in a mouse model. In silico modeling studies provide mechanistic insights into how the Rp isomer at the 5' end and Sp isomer at the 3' end of the antisense siRNA enhance Argonaute 2 (Ago2) loading and metabolic stability of siRNAs in a concerted manner.


Asunto(s)
Organofosfatos , ARN Interferente Pequeño , Animales , Isomerismo , Ratones , Interferencia de ARN , Estabilidad del ARN , ARN Bicatenario , ARN Interferente Pequeño/metabolismo
9.
Nucleic Acids Res ; 49(19): 10851-10867, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34648028

RESUMEN

We recently reported that RNAi-mediated off-target effects are important drivers of the hepatotoxicity observed for a subset of GalNAc-siRNA conjugates in rodents, and that these findings could be mitigated by seed-pairing destabilization using a single GNA nucleotide placed within the seed region of the guide strand. Here, we report further investigation of the unique and poorly understood GNA/RNA cross-pairing behavior to better inform GNA-containing siRNA design. A reexamination of published GNA homoduplex crystal structures, along with a novel structure containing a single (S)-GNA-A residue in duplex RNA, indicated that GNA nucleotides universally adopt a rotated nucleobase orientation within all duplex contexts. Such an orientation strongly affects GNA-C and GNA-G but not GNA-A or GNA-T pairing in GNA/RNA heteroduplexes. Transposition of the hydrogen-bond donor/acceptor pairs using the novel (S)-GNA-isocytidine and -isoguanosine nucleotides could rescue productive base-pairing with the complementary G or C ribonucleotides, respectively. GalNAc-siRNAs containing these GNA isonucleotides showed an improved in vitro activity, a similar improvement in off-target profile, and maintained in vivo activity and guide strand liver levels more consistent with the parent siRNAs than those modified with isomeric GNA-C or -G, thereby expanding our toolbox for the design of siRNAs with minimized off-target activity.


Asunto(s)
Adenosina/química , Citidina/química , Glicoles/química , Guanosina/química , Oligorribonucleótidos/química , ARN Bicatenario/química , ARN Interferente Pequeño/química , Acetilgalactosamina , Oxidorreductasas de Alcohol/antagonistas & inhibidores , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Animales , Emparejamiento Base , Células COS , Chlorocebus aethiops , Dimetilformamida/análogos & derivados , Dimetilformamida/química , Etilaminas/química , Femenino , Hepatocitos/citología , Hepatocitos/metabolismo , Enlace de Hidrógeno , Ratones , Ratones Endogámicos C57BL , Oligorribonucleótidos/genética , Oligorribonucleótidos/metabolismo , Compuestos Organofosforados/química , Prealbúmina/antagonistas & inhibidores , Prealbúmina/genética , Prealbúmina/metabolismo , Cultivo Primario de Células , Estabilidad del ARN , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
10.
Microsyst Nanoeng ; 7: 69, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34567781

RESUMEN

Chip-to-chip and world-to-chip fluidic interconnections are paramount to enable the passage of liquids between component chips and to/from microfluidic systems. Unfortunately, most interconnect designs add additional physical constraints to chips with each additional interconnect leading to over-constrained microfluidic systems. The competing constraints provided by multiple interconnects induce strain in the chips, creating indeterminate dead volumes and misalignment between chips that comprise the microfluidic system. A novel, gasketless superhydrophobic fluidic interconnect (GSFI) that uses capillary forces to form a liquid bridge suspended between concentric through-holes and acting as a fluid passage was investigated. The GSFI decouples the alignment between component chips from the interconnect function and the attachment of the meniscus of the liquid bridge to the edges of the holes produces negligible dead volume. This passive seal was created by patterning parallel superhydrophobic surfaces (water contact angle ≥ 150°) around concentric microfluidic ports separated by a gap. The relative position of the two polymer chips was determined by passive kinematic constraints, three spherical ball bearings seated in v-grooves. A leakage pressure model derived from the Young-Laplace equation was used to estimate the leakage pressure at failure for the liquid bridge. Injection-molded, Cyclic Olefin Copolymer (COC) chip assemblies with assembly gaps from 3 to 240 µm were used to experimentally validate the model. The maximum leakage pressure measured for the GSFI was 21.4 kPa (3.1 psig), which corresponded to a measured mean assembly gap of 3 µm, and decreased to 0.5 kPa (0.073 psig) at a mean assembly gap of 240 µm. The effect of radial misalignment on the efficacy of the gasketless seals was tested and no significant effect was observed. This may be a function of how the liquid bridges are formed during the priming of the chip, but additional research is required to test that hypothesis.

11.
Nucleic Acids Res ; 49(18): 10250-10264, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34508350

RESUMEN

In order to achieve efficient therapeutic post-transcriptional gene-silencing mediated by the RNA interference (RNAi) pathway, small interfering RNAs (siRNAs) must be chemically modified. Several supra-RNA structures, with the potential to stabilize siRNAs metabolically have been evaluated for their ability to induce gene silencing, but all have limitations or have not been explored in therapeutically relevant contexts. Covalently closed circular RNA transcripts are prevalent in eukaryotes and have potential as biomarkers and disease targets, and circular RNA mimics are being explored for use as therapies. Here we report the synthesis and evaluation of small circular interfering RNAs (sciRNAs). To synthesize sciRNAs, a sense strand functionalized with the trivalent N-acetylgalactosamine (GalNAc) ligand and cyclized using 'click' chemistry was annealed to an antisense strand. This strategy was used for synthesis of small circles, but could also be used for synthesis of larger circular RNA mimics. We evaluated various sciRNA designs in vitro and in vivo. We observed improved metabolic stability of the sense strand upon circularization and off-target effects were eliminated. The 5'-(E)-vinylphosphonate modification of the antisense strand resulted in GalNAc-sciRNAs that are potent in vivo at therapeutically relevant doses. Physicochemical studies and NMR-based structural analysis, together with molecular modeling studies, shed light on the interactions of this novel class of siRNAs, which have a partial duplex character, with the RNAi machinery.


Asunto(s)
Silenciador del Gen , Interferencia de ARN , ARN Circular , ARN Interferente Pequeño , Animales , Femenino , Ratones , Ratones Endogámicos C57BL
12.
Nucleic Acids Res ; 48(21): 11827-11844, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-32808038

RESUMEN

One hallmark of trivalent N-acetylgalactosamine (GalNAc)-conjugated siRNAs is the remarkable durability of silencing that can persist for months in preclinical species and humans. Here, we investigated the underlying biology supporting this extended duration of pharmacological activity. We found that siRNA accumulation and stability in acidic intracellular compartments is critical for long-term activity. We show that functional siRNA can be liberated from these compartments and loaded into newly generated Argonaute 2 protein complexes weeks after dosing, enabling continuous RNAi activity over time. Identical siRNAs delivered in lipid nanoparticles or as GalNAc conjugates were dose-adjusted to achieve similar knockdown, but only GalNAc-siRNAs supported an extended duration of activity, illustrating the importance of receptor-mediated siRNA trafficking in the process. Taken together, we provide several lines of evidence that acidic intracellular compartments serve as a long-term depot for GalNAc-siRNA conjugates and are the major contributor to the extended duration of activity observed in vivo.


Asunto(s)
Acetilgalactosamina/metabolismo , Receptor de Asialoglicoproteína/metabolismo , Portadores de Fármacos , Silenciador del Gen , Prealbúmina/genética , ARN Interferente Pequeño/metabolismo , Acetilgalactosamina/química , Animales , Proteínas Argonautas/genética , Receptor de Asialoglicoproteína/genética , Transporte Biológico , Estabilidad de Medicamentos , Femenino , Glicoconjugados/química , Glicoconjugados/metabolismo , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Hígado/citología , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Nanopartículas/química , Nanopartículas/metabolismo , Prealbúmina/antagonistas & inhibidores , Prealbúmina/metabolismo , ARN Interferente Pequeño/genética , Factores de Tiempo
13.
Nucleic Acid Ther ; 30(3): 133-142, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32202961

RESUMEN

The goal of this study was to develop a reverse transcription quantitative polymerase chain reaction (RT-qPCR) method for the accurate quantification of chemically modified small interfering RNA (siRNA) including but not restricted to thermally destabilizing modifications such as glycol nucleic acid (GNA). RT-qPCR was found to be superior to mass spectrometry-based siRNA detection in terms of sensitivity and throughput. However, mass spectrometry is still the preferred method when specific metabolite detection is required and is also insensitive to siRNA chemical modifications such as GNA. The RT-qPCR approach can be optimized to take chemical modifications into account and works robustly in different matrices without optimization, unlike mass spectrometry. RT-qPCR and mass spectrometry both have their strengths and weaknesses for the detection of siRNA and must be used appropriately depending on the questions at hand. Considerations such as desired throughput, assay sensitivity, and metabolite identification must be weighed when choosing which methodology to apply.


Asunto(s)
Monitoreo de Drogas/métodos , ARN Interferente Pequeño/farmacocinética , Tratamiento con ARN de Interferencia/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Calibración , Monitoreo de Drogas/instrumentación , Glicoles/química , Humanos , Espectrometría de Masas , Medicina de Precisión/instrumentación , Medicina de Precisión/métodos , ARN Interferente Pequeño/sangre , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/normas , Sensibilidad y Especificidad
14.
Int J Mol Sci ; 20(13)2019 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-31277458

RESUMEN

The general transcription factor TFIID is a core promoter selectivity factor that recognizes DNA sequence elements and nucleates the assembly of a pre-initiation complex (PIC). The mechanism by which TFIID recognizes the promoter is poorly understood. The TATA-box binding protein (TBP) is a subunit of the multi-protein TFIID complex believed to be key in this process. We reconstituted transcription from highly purified components on a ribosomal protein gene (RPS5) and discovered that TFIIDΔTBP binds and rearranges the promoter DNA topology independent of TBP. TFIIDΔTBP binds ~200 bp of the promoter and changes the DNA topology to a larger extent than the nucleosome core particle. We show that TBP inhibits the DNA binding activities of TFIIDΔTBP and conclude that the complete TFIID complex may represent an auto-inhibited state. Furthermore, we show that the DNA binding activities of TFIIDΔTBP are required for assembly of a PIC poised to select the correct transcription start site (TSS).


Asunto(s)
Reordenamiento Génico/genética , Regiones Promotoras Genéticas , Proteínas Ribosómicas/genética , TATA Box/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/metabolismo , ADN/metabolismo , Genes Esenciales , Imagenología Tridimensional , Unión Proteica , Transcripción Genética
15.
Chem Commun (Camb) ; 55(35): 5139-5142, 2019 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-30977478

RESUMEN

The 5'-monophosphate group plays an important role in strand selection during gene silencing mediated by small-interfering RNA. We show that blocking of 5' phosphorylation of the sense strand by introducing a 5'-morpholino modification improves antisense strand selection and RNAi activity. The 5'-morpholino modification of the antisense strand triggers complete loss of activity.


Asunto(s)
Morfolinos/química , ARN Interferente Pequeño/química , Animales , Apolipoproteína B-100 , Apolipoproteínas B/genética , Proteínas Argonautas/genética , Silenciador del Gen , Humanos , Ratones , Modelos Moleculares , Morfolinos/síntesis química , Morfolinos/genética , Interferencia de ARN , ARN Interferente Pequeño/síntesis química , ARN Interferente Pequeño/genética
16.
Nucleic Acids Res ; 47(7): 3306-3320, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30820542

RESUMEN

For oligonucleotide therapeutics, chemical modifications of the sugar-phosphate backbone are frequently used to confer drug-like properties. Because 2'-deoxy-2'-fluoro (2'-F) nucleotides are not known to occur naturally, their safety profile was assessed when used in revusiran and ALN-TTRSC02, two short interfering RNAs (siRNAs), of the same sequence but different chemical modification pattern and metabolic stability, conjugated to an N-acetylgalactosamine (GalNAc) ligand for targeted delivery to hepatocytes. Exposure to 2'-F-monomer metabolites was low and transient in rats and humans. In vitro, 2'-F-nucleoside 5'-triphosphates were neither inhibitors nor preferred substrates for human polymerases, and no obligate or non-obligate chain termination was observed. Modest effects on cell viability and mitochondrial DNA were observed in vitro in a subset of cell types at high concentrations of 2'-F-nucleosides, typically not attained in vivo. No apparent functional impact on mitochondria and no significant accumulation of 2'-F-monomers were observed after weekly administration of two GalNAc-siRNA conjugates in rats for ∼2 years. Taken together, the results support the conclusion that 2'-F nucleotides can be safely applied for the design of metabolically stabilized therapeutic GalNAc-siRNAs with favorable potency and prolonged duration of activity allowing for low dose and infrequent dosing.


Asunto(s)
Acetilgalactosamina/efectos adversos , Acetilgalactosamina/química , Desoxirribonucleótidos/efectos adversos , Desoxirribonucleótidos/química , Flúor/química , ARN Interferente Pequeño/efectos adversos , ARN Interferente Pequeño/química , Animales , Femenino , Flúor/efectos adversos , Humanos , Masculino , Ratas , Ratas Sprague-Dawley
17.
Nat Biotechnol ; 36(6): 509-511, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29786096

RESUMEN

We report rapid, potent reversal of GalNAc-siRNA-mediated RNA interference (RNAi) activity in vivo with short, synthetic, high-affinity oligonucleotides complementary to the siRNA guide strand. We found that 9-mers with five locked nucleic acids (LNAs) have the highest potency across several targets. Our modular, sequence-specific approach, named REVERSIR, may enhance the therapeutic profile of any long-acting GalNAc-siRNA (short interfering RNA) conjugate by enabling control of RNAi pharmacology.


Asunto(s)
Silenciador del Gen , ARN Interferente Pequeño/genética , Acetilgalactosamina/genética , Animales , Secuencia de Bases , Biotecnología , Células Cultivadas , Femenino , Hepatocitos/metabolismo , Humanos , Ligandos , Ratones , Ratones Endogámicos C57BL , Oligonucleótidos/química , Oligonucleótidos/genética , Interferencia de ARN , ARN Interferente Pequeño/química
18.
Mol Ther ; 26(3): 708-717, 2018 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29456020

RESUMEN

Significant progress has been made in the advancement of RNAi therapeutics by combining a synthetic triantennary N-acetylgalactosamine ligand targeting the asialoglycoprotein receptor with chemically modified small interfering RNA (siRNA) designs, including the recently described Enhanced Stabilization Chemistry. This strategy has demonstrated robust RNAi-mediated gene silencing in liver after subcutaneous administration across species, including human. Here we demonstrate that substantial efficacy improvements can be achieved through further refinement of siRNA chemistry, optimizing the positioning of 2'-deoxy-2'-fluoro and 2'-O-methyl ribosugar modifications across both strands of the double-stranded siRNA duplex to enhance stability without compromising intrinsic RNAi activity. To achieve this, we employed an iterative screening approach across multiple siRNAs to arrive at advanced designs with low 2'-deoxy-2'-fluoro content that yield significantly improved potency and duration in preclinical species, including non-human primate. Liver exposure data indicate that the improvement in potency is predominantly due to increased metabolic stability of the siRNA conjugates.


Asunto(s)
Acetilgalactosamina , Interferencia de ARN , ARN Interferente Pequeño , Acetilgalactosamina/química , Animales , Proteínas Argonautas/genética , Regulación de la Expresión Génica , Silenciador del Gen , Hepatocitos/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Transgénicos , ARN Mensajero/genética , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética
19.
J Med Chem ; 61(3): 734-744, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29376650

RESUMEN

(E)-Vinylphosphonate ((E)-VP), a metabolically stable phosphate mimic at the 5'-end of the antisense strand, enhances the in vivo potency of siRNA. Here we describe a straightforward synthetic approach to incorporate a nucleotide carrying a vinylphosphonate (VP) moiety at the 5'-end of oligonucleotides under standard solid-phase synthesis and deprotection conditions by utilizing pivaloyloxymethyl (POM) protected VP-nucleoside phosphoramidites. The POM protection enhances scope and scalability of 5'-VP-modified oligonucleotides and, in a broader sense, the synthesis of oligonucleotides modified with phosphonate moieties. Trivalent N-acetylgalactosamine-conjugated small interfering RNA (GalNAc-siRNA) comprising (E)-geometrical isomer of VP showed improved RISC loading with robust RNAi-mediated gene silencing in mice compared to the corresponding (Z)-isomer despite similar tissue accumulation. We also obtained structural insights into why bulkier 2'-ribosugar substitutions such as 2'-O-[2-(methylamino)-2-oxoethyl] are well tolerated only when combined with 5'-(E)-VP.


Asunto(s)
Organofosfonatos/química , Organofosfonatos/síntesis química , ARN Interferente Pequeño/química , Animales , Proteínas Argonautas/química , Proteínas Argonautas/deficiencia , Proteínas Argonautas/genética , Secuencia de Bases , Técnicas de Química Sintética , Silenciador del Gen , Ratones , Modelos Moleculares , Dominios Proteicos , ARN Interferente Pequeño/genética , Estereoisomerismo
20.
Nucleic Acids Res ; 45(19): 10969-10977, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-28981809

RESUMEN

Covalent attachment of a synthetic triantennary N-acetylagalactosamine (GalNAc) ligand to chemically modified siRNA has enabled asialoglycoprotein (ASGPR)-mediated targeted delivery of therapeutically active siRNAs to hepatocytes in vivo. This approach has become transformative for the delivery of RNAi therapeutics as well as other classes of investigational oligonucleotide therapeutics to the liver. For efficient functional delivery of intact drug into the desired subcellular compartment, however, it is critical that the nucleic acids are stabilized against nucleolytic degradation. Here, we compared two siRNAs of the same sequence but with different modification pattern resulting in different degrees of protection against nuclease activity. In vitro stability studies in different biological matrices show that 5'-exonuclease is the most prevalent nuclease activity in endo-lysosomal compartments and that additional stabilization in the 5'-regions of both siRNA strands significantly enhances the overall metabolic stability of GalNAc-siRNA conjugates. In good agreement with in vitro findings, the enhanced stability translated into substantially improved liver exposure, gene silencing efficacy and duration of effect in mice. Follow-up studies with a second set of conjugates targeting a different transcript confirmed the previous results, provided additional insights into kinetics of RISC loading and demonstrated excellent translation to non-human primates.


Asunto(s)
Acetilgalactosamina/farmacocinética , Riñón/metabolismo , Hígado/metabolismo , ARN Interferente Pequeño/farmacocinética , Acetilgalactosamina/administración & dosificación , Acetilgalactosamina/metabolismo , Animales , Área Bajo la Curva , Sistemas de Liberación de Medicamentos/métodos , Humanos , Hígado/citología , Masculino , Tasa de Depuración Metabólica , Ratones Endogámicos C57BL , Interferencia de ARN , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...