Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Inorg Chem ; 2019(8)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38715932

RESUMEN

Neutron diffraction and spectroscopy offer unique insight into structures and properties of solids and molecular materials. All neutron instruments located at the various neutron sources are distinct, even if their designs are based on similar principles, and thus, they are usually less familiar to the community than commercial X-ray diffractometers and optical spectrometers. Major neutron instruments in the USA, which are open to scientists around the world, and examples of their use in coordination chemistry research are presented here, along with a list of similar instruments at main neutron facilities in other countries. The reader may easily and quickly find from this minireview an appropriate neutron instrument for research. The instruments include single-crystal and powder diffractometers to determine structures, inelastic neutron scattering (INS) spectrometers to probe magnetic and vibrational excitations, and quasielastic neutron scattering (QENS) spectrometers to study molecular dynamics such as methyl rotation on ligands. Key and unique features of the diffraction and neutron spectroscopy that are relevant to inorganic chemistry are reviewed.

2.
Nat Chem ; 16(5): 809-816, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38321236

RESUMEN

Nanoporous materials have attracted great attention for gas storage, but achieving high volumetric storage capacity remains a challenge. Here, by using neutron powder diffraction, volumetric gas adsorption, inelastic neutron scattering and first-principles calculations, we investigate a magnesium borohydride framework that has small pores and a partially negatively charged non-flat interior for hydrogen and nitrogen uptake. Hydrogen and nitrogen occupy distinctly different adsorption sites in the pores, with very different limiting capacities of 2.33 H2 and 0.66 N2 per Mg(BH4)2. Molecular hydrogen is packed extremely densely, with about twice the density of liquid hydrogen (144 g H2 per litre of pore volume). We found a penta-dihydrogen cluster where H2 molecules in one position have rotational freedom, whereas H2 molecules in another position have a well-defined orientation and a directional interaction with the framework. This study reveals that densely packed hydrogen can be stabilized in small-pore materials at ambient pressures.

3.
J Am Chem Soc ; 145(40): 22150-22157, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37767573

RESUMEN

Long-duration storage of hydrogen is necessary for coupling renewable H2 with stationary fuel cell power applications. In this work, aluminum formate (ALF), which adopts the ReO3-type structure, is shown to have remarkable H2 storage performance at non-cryogenic (>120 K) temperatures and low pressures. The most promising performance of ALF is found between 120 K and 160 K and at 10 bar to 20 bar. The study illustrates H2 adsorption performance of ALF over the 77 K to 296 K temperature range using gas isotherms, in situ neutron powder diffraction, and DFT calculations, as well as technoeconomic analysis (TEA), illustrating ALF's competitive performance for long-duration storage versus compressed hydrogen and leading metal-organic frameworks. In the TEA, it is shown that ALF's storage capacity, when combined with a temperature/pressure swing process, has advantages versus compressed H2 at a fraction of the pressure (15 bar versus 350 bar). Given ALF's performance in the 10 bar to 20 bar regime under moderate cooling, it is particularly promising for use in safe storage systems serving fuel cells.

4.
J Am Chem Soc ; 145(40): 21955-21965, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37772785

RESUMEN

A proposed low-energy alternative to the separation of alkanes from alkenes by energy-intensive cryogenic distillation is separation by porous adsorbents. Unfortunately, most adsorbents preferentially take up the desired, high-value major component alkene, requiring frequent regeneration. Adsorbents with inverse selectivity for the minor component alkane would enable the direct production of purified, reagent-grade alkene, greatly reducing global energy consumption. However, such materials are exceedingly rare, especially for propane/propylene separation. Here, we report that through adaptive and spontaneous pore size and shape adaptation to optimize an ensemble of weak noncovalent interactions, the structurally responsive metal-organic framework CdIF-13 (sod-Cd(benzimidazolate)2) exhibits inverse selectivity for propane over propylene with record-setting separation performance under industrially relevant temperature, pressure, and mixture conditions. Powder synchrotron X-ray diffraction measurements combined with first-principles calculations yield atomic-scale insight and reveal the induced fit mechanism of adsorbate-specific pore adaptation and ensemble interactions between ligands and adsorbates. Dynamic column breakthrough measurements confirm that CdIF-13 displays selectivity under mixed-component conditions of varying ratios, with a record measured selectivity factor of α ≈ 3 at 95:5 propylene:propane at 298 K and 1 bar. When sequenced with a low-cost rigid adsorbent, we demonstrated the direct purification of propylene under ambient conditions. This combined atomic-level structural characterization and performance testing firmly establishes how cooperatively flexible materials can be capable of unprecedented separation factors.

5.
J Am Chem Soc ; 145(21): 11643-11649, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37196352

RESUMEN

Exclusive capture of carbon dioxide (CO2) from hydrocarbons via adsorptive separation is an important technology in the petrochemical industry, especially for acetylene (C2H2) production. However, the physicochemical similarities between CO2 and C2H2 hamper the development of CO2-preferential sorbents, and CO2 is mainly discerned via C recognition with low efficiency. Here, we report that the ultramicroporous material Al(HCOO)3, ALF, can exclusively capture CO2 from hydrocarbon mixtures, including those containing C2H2 and CH4. ALF shows a remarkable CO2 capacity of 86.2 cm3 g-1 and record-high CO2/C2H2 and CO2/CH4 uptake ratios. The inverse CO2/C2H2 separation and exclusive CO2 capture performance from hydrocarbons are validated via adsorption isotherms and dynamic breakthrough experiments. Notably, the hydrogen-confined pore cavities with appropriate dimensional size provide an ideal pore chemistry to specifically match CO2 via a hydrogen bonding mechanism, with all hydrocarbons rejected. This molecular recognition mechanism is unveiled by in situ Fourier-transform infrared spectroscopy, X-ray diffraction studies, and molecular simulations.

6.
J Am Chem Soc ; 145(17): 9850-9856, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37083432

RESUMEN

Separating oxygen from air to create oxygen-enriched gas streams is a process that is significant in both industrial and medical fields. However, the prominent technologies for creating oxygen-enriched gas streams are both energy and infrastructure intensive as they use cryogenic temperatures or materials that adsorb N2 from air. The latter method is less efficient than the methods that adsorb O2 directly. Herein, we show, via a combination of gas adsorption isotherms, gas breakthrough experiments, neutron and synchrotron X-ray powder diffraction, Raman spectroscopy, and computational studies, that the metal-organic framework, Al(HCOO)3 (ALF), which is easily prepared at low cost from commodity chemicals, exhibits substantial O2 adsorption and excellent time-dependent O2/N2 selectivity in a range of 50-125 near dry ice/solvent (≈190 K) temperatures. The effective O2 adsorption with ALF at ≈190 K and ≈0.21 bar (the partial pressure of O2 in air) is ≈1.7 mmol/g, and at ice/salt temperatures (≈250 K), it is ≈0.3 mmol/g. Though the kinetics for full adsorption of O2 near 190 K are slower than at temperatures nearer 250 K, the kinetics for initial O2 adsorption are fast, suggesting that O2 separation using ALF with rapid temperature swings at ambient pressures is a potentially viable choice for low-cost air separation applications. We also present synthetic strategies for improving the kinetics of this family of compounds, namely, via Al/Fe solid solutions. To the best of our knowledge, ALF has the highest O2/N2 sorption selectivity among MOF adsorbents without open metal sites as verified by co-adsorption experiments..

7.
J Am Chem Soc ; 145(14): 8033-8042, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36995256

RESUMEN

Step-shaped adsorption-desorption of gaseous payloads by flexible metal-organic frameworks can facilitate the delivery of large usable capacities with significantly reduced energetic penalties. This is desirable for the storage, transport, and delivery of H2, as prototypical adsorbents require large swings in pressure and temperature to achieve usable capacities approaching their total capacities. However, the weak physisorption of H2 typically necessitates undesirably high pressures to induce the framework phase change. As de novo design of flexible frameworks is exceedingly challenging, the ability to intuitively adapt known frameworks is required. We demonstrate that the multivariate linker approach is a powerful tool for tuning the phase change behavior of flexible frameworks. In this work, 2-methyl-5,6-difluorobenzimidazolate was solvothermally incorporated into the known framework CdIF-13 (sod-Cd(benzimidazolate)2), resulting in the multivariate framework sod-Cd(benzimidazolate)1.87(2-methyl-5,6-difluorobenzimidazolate)0.13 (ratio = 14:1), which exhibited a considerably reduced stepped adsorption threshold pressure while maintaining the desirable adsorption-desorption profile and capacity of CdIF-13. At 77 K, the multivariate framework exhibits stepped H2 adsorption with saturation below 50 bar and minimal desorption hysteresis at 5 bar. At 87 K, saturation of step-shaped adsorption occurs by 90 bar, with hysteresis closing at 30 bar. These adsorption-desorption profiles enable usable capacities in a mild pressure swing process above 1 mass %, representing 85-92% of the total capacities. This work demonstrates that the desirable performance of flexible frameworks can be readily adapted through the multivariate approach to enable efficient storage and delivery of weakly physisorbing species.

8.
Sci Adv ; 8(44): eade1473, 2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36322645

RESUMEN

A combination of gas adsorption and gas breakthrough measurements show that the metal-organic framework, Al(HCOO)3 (ALF), which can be made inexpensively from commodity chemicals, exhibits excellent CO2 adsorption capacities and outstanding CO2/N2 selectivity that enable it to remove CO2 from dried CO2-containing gas streams at elevated temperatures (323 kelvin). Notably, ALF is scalable, readily pelletized, stable to SO2 and NO, and simple to regenerate. Density functional theory calculations and in situ neutron diffraction studies reveal that the preferential adsorption of CO2 is a size-selective separation that depends on the subtle difference between the kinetic diameters of CO2 and N2. The findings are supported by additional measurements, including Fourier transform infrared spectroscopy, thermogravimetric analysis, and variable temperature powder and single-crystal x-ray diffraction.

9.
Artículo en Inglés | MEDLINE | ID: mdl-35656844

RESUMEN

Controlling the pressure at which liquids intrude (wet) and extrude (dry) a nanopore is of paramount importance for a broad range of applications, such as energy conversion, catalysis, chromatography, separation, ionic channels, and many more. To tune these characteristics, one typically acts on the chemical nature of the system or pore size. In this work, we propose an alternative route for controlling both intrusion and extrusion pressures via proper arrangement of the grains of the nanoporous material. To prove the concept, dynamic intrusion-extrusion cycles for powdered and monolithic ZIF-8 metal-organic framework were conducted by means of water porosimetry and in operando neutron scattering. We report a drastic increase in intrusion-extrusion dynamic hysteresis when going from a fine powder to a dense monolith configuration, transforming an intermediate performance of the ZIF-8 + water system (poor molecular spring) into a desirable shock-absorber with more than 1 order of magnitude enhancement of dissipated energy per cycle. The obtained results are supported by MD simulations and pave the way for an alternative methodology of tuning intrusion-extrusion pressure using a macroscopic arrangement of nanoporous material.

10.
Sci Adv ; 8(24): eabm5379, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35714182

RESUMEN

The success and continued expansion of research on metal-oxo clusters owe largely to their structural richness and wide range of functions. However, while most of them known to date are negatively charged polyoxometalates, there is only a handful of cationic ones, much less functional ones. Here, we show an all-inorganic hydroxyiodide [H10.7Sb32.1O44][H2.1Sb2.1I8O6][Sb0.76I6]2·25H2O (HSbOI), forming a face-centered cubic structure with cationic Sb32O44 clusters and two types of anionic clusters in its interstitial spaces. Although it is submicrometer in size, electron diffraction tomography of HSbOI allowed the construction of the initial structural model, followed by powder Rietveld refinement to reach the final structure. The cationic cluster is characterized by the presence of acidic protons on its surface due to substantial Sb3+ deficiencies, which enables HSbOI to serve as an excellent solid acid catalyst. These results open up a frontier for the exploration and functionalization of cationic metal-oxo clusters containing heavy main group elements.

11.
Chem Mater ; 34(9): 4029-4038, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35573109

RESUMEN

Natrium super ionic conductor (NASICON) compounds form a rich and highly chemically tunable family of crystalline materials that are of widespread interest because they include exemplars with high ionic conductivity, low thermal expansion, and redox tunability. This makes them suitable candidates for applications ranging from solid-state batteries to nuclear waste storage materials. The key to an understanding of these properties, including the origins of effective cation transport and low, anisotropic (and sometimes negative) thermal expansion, lies in the lattice dynamics associated with specific details of the crystal structure. Here we closely examine the prototypical NASICON compound, NaZr2(PO4)3, and obtain detailed insights into such behavior via variable-temperature neutron diffraction and 23Na and 31P solid-state NMR studies, coupled with comprehensive density functional theory-based calculations of NMR parameters. Temperature-dependent NMR studies yield some surprising trends in the chemical shifts and the quadrupolar coupling constants that are not captured by computation unless the underlying vibrational modes of the crystal are explicitly taken into account. Furthermore, the trajectories of the sodium, zirconium, and oxygen atoms in our dynamical simulations show good qualitative agreement with the anisotropic thermal parameters obtained at higher temperatures by neutron diffraction. The work presented here widens the utility of NMR crystallography to include thermal effects as a unique probe of interesting lattice dynamics in functional materials.

12.
Inorg Chem ; 61(14): 5452-5458, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35344655

RESUMEN

Here we present a comparative study of the magnetic and crystal chemical properties of two Co2+ containing garnets. CaY2Co2Ge3O12 (which has been reported previously) and NaCa2Co2V3O12 both exhibit the onset of antiferromagnetic order around 6 K as well as field-induced transitions around 7 and 10 T, respectively, that manifest as anomalies in the dielectric properties of the material. We perform detailed crystal-chemistry analyses and complementary density functional theory calculations to show that very minor changes in the local environment of the Co ions explain the differences in the two magnetic structures and their respective properties.

13.
J Am Chem Soc ; 144(13): 5795-5811, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35325534

RESUMEN

In the pursuit of urgently needed, energy dense solid-state batteries for electric vehicle and portable electronics applications, halide solid electrolytes offer a promising path forward with exceptional compatibility against high-voltage oxide electrodes, tunable ionic conductivities, and facile processing. For this family of compounds, synthesis protocols strongly affect cation site disorder and modulate Li+ mobility. In this work, we reveal the presence of a high concentration of stacking faults in the superionic conductor Li3YCl6 and demonstrate a method of controlling its Li+ conductivity by tuning the defect concentration with synthesis and heat treatments at select temperatures. Leveraging complementary insights from variable temperature synchrotron X-ray diffraction, neutron diffraction, cryogenic transmission electron microscopy, solid-state nuclear magnetic resonance, density functional theory, and electrochemical impedance spectroscopy, we identify the nature of planar defects and the role of nonstoichiometry in lowering Li+ migration barriers and increasing Li site connectivity in mechanochemically synthesized Li3YCl6. We harness paramagnetic relaxation enhancement to enable 89Y solid-state NMR and directly contrast the Y cation site disorder resulting from different preparation methods, demonstrating a potent tool for other researchers studying Y-containing compositions. With heat treatments at temperatures as low as 333 K (60 °C), we decrease the concentration of planar defects, demonstrating a simple method for tuning the Li+ conductivity. Findings from this work are expected to be generalizable to other halide solid electrolyte candidates and provide an improved understanding of defect-enabled Li+ conduction in this class of Li-ion conductors.

14.
Chem Mater ; 32(19)2022.
Artículo en Inglés | MEDLINE | ID: mdl-38504772

RESUMEN

Li2OHCl is an exemplar of the antiperovskite family of ionic conductors, for which high ionic conductivities have been reported, but in which the atomic-level mechanism of ion migration is unclear. The stable phase is both crystallographically defective and disordered, having ∼1/3 of the Li sites vacant, while the presence of the OH- anion introduces the possibility of rotational disorder that may be coupled to cation migration. Here, complementary experimental and computational methods are applied to understand the relationship between the crystal chemistry and ionic conductivity in Li2OHCl, which undergoes an orthorhombic to cubic phase transition near 311 K (≈38 °C) and coincides with the more than a factor of 10 change in ionic conductivity (from 1.2 × 10-5mS/cm at 37 °C to 1.4 × 10-3 mS/cm at 39 °C). X-ray and neutron experiments conducted over the temperature range 20-200 °C, including diffraction, quasi-elastic neutron scattering (QENS), the maximum entropy method (MEM) analysis, and ab initio molecular dynamics (AIMD) simulations, together show conclusively that the high lithium ion conductivity of cubic Li2OHCl is correlated to "paddlewheel" rotation of the dynamic OH- anion. The present results suggest that in antiperovskites and derivative structures a high cation vacancy concentration combined with the presence of disordered molecular anions can lead to high cation mobility.

15.
Inorg Chem ; 60(22): 17201-17211, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34735136

RESUMEN

A polycrystalline iridate Li8IrO6 material was prepared via heating Li2O and IrO2 starting materials in a sealed quartz tube at 650 °C for 48 h. The structure was determined from Rietveld refinement of room-temperature powder neutron diffraction data. Li8IrO6 adopts the nonpolar space group R3̅ with Li atoms occupying the tetrahedral and octahedral sites, which is supported by the electron diffraction and solid-state 7Li NMR. This results in a crystal structure consisting of LiO4 tetrahedral layers alternating with mixed IrO6 and LiO6 octahedral layers along the crystallographic c-axis. The +4 oxidation state of Ir4+ was confirmed by near-edge X-ray absorption spectroscopy. An in situ synchrotron X-ray diffraction study of Li8IrO6 indicates that the sample is stable up to 1000 °C and exhibits no structural transitions. Magnetic measurements suggest long-range antiferromagnetic ordering with a Néel temperature (TN) of 4 K, which is corroborated by heat capacity measurements. The localized effective moment µeff (Ir) = 1.73 µB and insulating character indicate that Li8IrO6 is a correlated insulator. First-principles calculations support the nonpolar crystal structure and reveal the insulating behavior both in paramagnetic and antiferromagnetic states.

16.
J Am Chem Soc ; 143(36): 14884-14894, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34463495

RESUMEN

Coordinatively unsaturated metal sites within certain zeolites and metal-organic frameworks can strongly adsorb a wide array of substrates. While many classical examples involve electron-poor metal cations that interact with adsorbates largely through physical interactions, unsaturated electron-rich metal centers housed within porous frameworks can often chemisorb guests amenable to redox activity or covalent bond formation. Despite the promise that materials bearing such sites hold in addressing myriad challenges in gas separations and storage, very few studies have directly interrogated mechanisms of chemisorption at open metal sites within porous frameworks. Here, we show that nondissociative chemisorption of H2 at the trigonal pyramidal Cu+ sites in the metal-organic framework CuI-MFU-4l occurs via the intermediacy of a metastable physisorbed precursor species. In situ powder neutron diffraction experiments enable crystallographic characterization of this intermediate, the first time that this has been accomplished for any material. Evidence for a precursor intermediate is also afforded from temperature-programmed desorption and density functional theory calculations. The activation barrier separating the precursor species from the chemisorbed state is shown to correlate with a change in the Cu+ coordination environment that enhances π-backbonding with H2. Ultimately, these findings demonstrate that adsorption at framework metal sites does not always follow a concerted pathway and underscore the importance of probing kinetics in the design of next-generation adsorbents.

17.
Inorg Chem ; 60(16): 11957-11963, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34309363

RESUMEN

Studies on magnetic oxyhydrides have been almost limited to perovskite-based lattices with corner-sharing octahedra with a M-H-M (M: transition metal) angle of θ ∼ 180°. Using a high-pressure method, we prepared BaCrO2H with a 6H-type hexagonal perovskite structure with corner- and face-sharing octahedra, offering a unique opportunity to investigate magnetic interactions based on a θ ∼ 90° case. Neutron diffraction for BaCrO2H revealed an antiferromagnetic (AFM) order at TN ∼ 375 K, which is higher than ∼240 K in BaCrO3-xFx. The relatively high TN of BaCrO2H can be explained by the preferred occupancy of H- at the face-sharing site that provides AFM superexchange in addition to AFM direct exchange interactions. First-principles calculations on BaCrO2H in comparison with BaCrO2F and BaMnO3 further reveal that the direct Cr-Cr interaction is significantly enhanced by shortening the Cr-Cr distance due to the covalent nature of H-. This study provides a useful strategy for the extensive control of magnetic interactions by exploiting the difference in the covalency of multiple anions.

18.
J Phys Condens Matter ; 33(37)2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34171852

RESUMEN

Na2Ni2TeO6has a layered hexagonal structure with a honeycomb lattice constituted by Ni2+and a chiral charge distribution of Na+that resides between the Ni layers. In the present work, the antiferromagnetic (AFM) transition temperature of Na2Ni2TeO6is confirmed atTN≈ 27 K, and further, it is found to be robust up to 8 T magnetic field and 1.2 GPa external pressure; and, without any frequency-dependence. Slight deviations from nominal Na-content (up to 5%) does not seem to influence the magnetic transition temperature,TN. Isothermal magnetization curves remain almost linear up to 13 T. Our analysis of neutron diffraction data shows that the magnetic structure of Na2Ni2TeO6is faithfully described by a model consisting of two phases described by the commensurate wave vectorsk→c,0.500and0.500.5, with an additional short-range order component incorporated in to the latter phase. Consequently, a zig-zag long-range ordered magnetic phase of Ni2+results in the compound, mixed with a short-range ordered phase, which is supported by our specific heat data. Theoretical computations based on density functional theory predict predominantly in-plane magnetic exchange interactions that conform to aJ1-J2-J3model with a strongJ3term. The computationally predicted parameters lead to a reliable estimate forTNand the experimentally observed zig-zag magnetic structure. A spin wave excitation in Na2Ni2TeO6atE≈ 5 meV atT= 5 K is mapped out through inelastic neutron scattering experiments, which is reproduced by linear spin wave theory calculations using theJvalues from our computations. Our specific heat data and inelastic neutron scattering data strongly indicate the presence of short-range spin correlations, atT>TN, stemming from incipient AFM clusters.

19.
Inorg Chem ; 60(14): 10565-10571, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34176270

RESUMEN

Strongly correlated electrons in layered perovskite structures have been the birthplace of high-temperature superconductivity, spin liquids, and quantum criticality. Specifically, the cuprate materials with layered structures made of corner-sharing square-planar CuO4 units have been intensely studied due to their Mott insulating ground state, which leads to high-temperature superconductivity upon doping. Identifying new compounds with similar lattice and electronic structures has become a challenge in solid-state chemistry. Here, we report the hydrothermal crystal growth of a new copper tellurite sulfate, Cu3(TeO4)(SO4)·H2O, a promising alternative to layered perovskites. The orthorhombic phase (space group Pnma) is made of corrugated layers of corner-sharing CuO4 square-planar units that are edge-shared with TeO4 units. The layers are linked by slabs of corner-sharing CuO4 and SO4. Using both the bond valence sum analysis and magnetization data, we find purely Cu2+ ions within the layers but a mixed valence of Cu2+/Cu+ between the layers. Cu3(TeO4)(SO4)·H2O undergoes an antiferromagnetic transition at TN = 67 K marked by a peak in the magnetic susceptibility. Upon further cooling, a spin-canting transition occurs at T* = 12 K, evidenced by a kink in the heat capacity. The spin-canting transition is explained on the basis of a J1-J2 model of magnetic interactions, which is consistent with the slightly different in-plane superexchange paths. We present Cu3(TeO4)(SO4)·H2O as a promising platform for the future doping and strain experiments that could tune the Mott insulating ground state into superconducting or spin liquid states.

20.
ACS Nano ; 15(5): 9048-9056, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-33982556

RESUMEN

Efficient and compact energy conversion is at the heart of the sustainable development of humanity. In this work it is demonstrated that hydrophobic flexible nanoporous materials can be used for thermal-to-mechanical energy conversion when coupled with water. In particular, a reversible nonhysteretic wetting-drying (contraction-expansion) cycle provoked by periodic temperature fluctuations was realized for water and a superhydrophobic nanoporous Cu2(tebpz) MOF (tebpz = 3,3',5,5'-tetraethyl-4,4'-bipyrazolate). A thermal-to-mechanical conversion efficiency of ∼30% was directly recorded by high-precision PVT-calorimetry, while the operational cycle was confirmed by in operando neutron scattering. The obtained results provide an alternative approach for compact energy conversion exploiting solid-liquid interfacial energy in nanoscopic flexible heterogeneous systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...