Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Express ; 25(22): 26885-26897, 2017 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-29092172

RESUMEN

This is the first report of a simultaneous ultraviolet/visible/NIR and longwave infrared laser-induced breakdown spectroscopy (UVN + LWIR LIBS) measurement. In our attempt to study the feasibility of combining the newly developed rapid LWIR LIBS linear array detection system to existing rapid analytical techniques for a wide range of chemical analysis applications, two different solid pharmaceutical tablets, Tylenol arthritis pain and Bufferin, were studied using both a recently designed simultaneous UVN + LWIR LIBS detection system and a fast AOTF NIR (1200 to 2200 nm) spectrometer. Every simultaneous UVN + LWIR LIBS emission spectrum in this work was initiated by one single laser pulse-induced micro-plasma in the ambient air atmosphere. Distinct atomic and molecular LIBS emission signatures of the target compounds measured simultaneously in UVN (200 to 1100 nm) and LWIR (5.6 to 10 µm) spectral regions are readily detected and identified without the need to employ complex data processing. In depth profiling studies of these two pharmaceutical tablets without any sample preparation, one can easily monitor the transition of the dominant LWIR emission signatures from coating ingredients gradually to the pharmaceutical ingredients underneath the coating. The observed LWIR LIBS emission signatures provide complementary molecular information to the UVN LIBS signatures, thus adding robustness to identification procedures. LIBS techniques are more surface specific while NIR spectroscopy has the capability to probe more bulk materials with its greater penetration depth. Both UVN + LWIR LIBS and NIR absorption spectroscopy have shown the capabilities of acquiring useful target analyte spectral signatures in comparable short time scales. The addition of a rapid LWIR spectroscopic probe to these widely used optical analytical methods, such as NIR spectroscopy and UVN LIBS, may greatly enhance the capability and accuracy of the combined system for a comprehensive analysis.

2.
Opt Express ; 25(7): 7238-7250, 2017 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-28380849

RESUMEN

In this work, comparative long-wave infrared (LWIR) laser-induced breakdown spectroscopy (LIBS) emission studies of two excitation sources: conventional 1.064 µm and eye-safe laser wavelength at 1.574 µm were performed to analyze several widely-used inorganic energetic materials such as ammonium and potassium compounds as well as the organic liquid chemical warfare agent simulant, dimethyl methylphosphate (DMMP). LWIR LIBS emissions generated by both excitation sources were examined using three different detection systems: a single element liquid nitrogen cooled Mercury Cadmium Telluride (MCT) detector, an MCT linear array detection system with multi-channel preamplifiers + integrators, and an MCT linear array detection system with readout integrated circuit. It was observed that LWIR LIBS studies using an eye-safe pump laser generally reproduced atomic and molecular IR LIBS spectra as previously observed under 1.064 µm laser excitation.

3.
Appl Spectrosc ; 71(4): 728-734, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28374608

RESUMEN

Thin solid films made of high nitro (NO2)/nitrate (NO3) content explosives were deposited on sand-blasted aluminum substrates and then studied using a mercury-cadmium-telluride (MCT) linear array detection system that is capable of rapidly capturing a broad spectrum of atomic and molecular laser-induced breakdown spectroscopy (LIBS) emissions in the long-wave infrared region (LWIR; ∼5.6-10 µm). Despite the similarities of their chemical compositions and structures, thin films of three commonly used explosives (RDX, HMX, and PETN) studied in this work can be rapidly identified in the ambient air by their molecular LIBS emission signatures in the LWIR region. A preliminary assessment of the detection limit for a thin film of RDX on aluminum appears to be much lower than 60 µg/cm2. This LWIR LIBS setup is capable of rapidly probing and charactering samples without the need for elaborate sample preparation and also offers the possibility of a simultaneous ultraviolet visible and LWIR LIBS measurement.

4.
Appl Spectrosc ; 68(2): 226-31, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24480279

RESUMEN

In an effort to augment the atomic emission spectra of conventional laser-induced breakdown spectroscopy (LIBS) and to provide an increase in selectivity, mid-wave to long-wave infrared (IR), LIBS studies were performed on several organic pharmaceuticals. Laser-induced breakdown spectroscopy signature molecular emissions of target organic compounds are observed for the first time in the IR fingerprint spectral region between 4-12 µm. The IR emission spectra of select organic pharmaceuticals closely correlate with their respective standard Fourier transform infrared spectra. Intact and/or fragment sample molecular species evidently survive the LIBS event. The combination of atomic emission signatures derived from conventional ultraviolet-visible-near-infrared LIBS with fingerprints of intact molecular entities determined from IR LIBS promises to be a powerful tool for chemical detection.


Asunto(s)
Preparaciones Farmacéuticas/análisis , Preparaciones Farmacéuticas/química , Espectrofotometría Infrarroja/métodos , Aspirina/química , Diseño de Equipo , Rayos Láser , Modelos Químicos , Compuestos Orgánicos/análisis , Compuestos Orgánicos/química , Espectrofotometría Infrarroja/instrumentación
5.
Appl Spectrosc ; 66(12): 1397-402, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23231901

RESUMEN

Laser-induced breakdown spectroscopy (LIBS) has shown great promise for applications in chemical, biological, and explosives sensing and has significant potential for real-time standoff detection and analysis. In this study, LIBS emissions were obtained in the mid-infrared (MIR) and long-wave infrared (LWIR) spectral regions for potential applications in explosive material sensing. The IR spectroscopy region revealed vibrational and rotational signatures of functional groups in molecules and fragments thereof. The silicon-based detector for conventional ultraviolet-visible LIBS operations was replaced with a mercury-cadmium-telluride detector for MIR-LWIR spectral detection. The IR spectral signature region between 4 and 12 µm was mined for the appearance of MIR and LWIR-LIBS emissions directly indicative of oxygenated breakdown products as well as dissociated, and/or recombined sample molecular fragments. Distinct LWIR-LIBS emission signatures from dissociated-recombination sample molecular fragments between 4 and 12 µm are observed for the first time.


Asunto(s)
Rayos Infrarrojos , Espectrofotometría Atómica/métodos , Rayos Láser , Compuestos de Amonio Cuaternario/química
6.
Appl Spectrosc ; 61(3): 321-6, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17389073

RESUMEN

Laser-induced breakdown spectroscopy (LIBS) is a powerful analytical technique for detecting and identifying trace elemental contaminants by monitoring the visible atomic emission from small plasmas. However, mid-infrared (MIR), generally referring to the wavelength range between 2.5 to 25 microm, molecular vibrational and rotational emissions generated by a sample during a LIBS event has not been reported. The LIBS investigations reported in the literature largely involve spectral analysis in the ultraviolet-visible-near-infrared (UV-VIS-NIR) region (less than 1 microm) to probe elemental composition and profiles. Measurements were made to probe the MIR emission from a LIBS event between 3 and 5.75 microm. Oxidation of the sputtered carbon atoms and/or carbon-containing fragments from the sample and atmospheric oxygen produced CO(2) and CO vibrational emission features from 4.2 to 4.8 microm. The LIBS MIR emission has the potential to augment the conventional UV-VIS electronic emission information with that in the MIR region.


Asunto(s)
Dióxido de Carbono/química , Carbono/química , Rayos Láser , Oxígeno/química , Espectrofotometría Infrarroja/métodos , Estudios de Factibilidad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA