Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 8(25): 12844, 2016 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-27310212

RESUMEN

Correction for 'Layered bismuth oxyhalide nanomaterials for highly efficient tumor photodynamic therapy' by Yu Xu, et al., Nanoscale, 2016, DOI: 10.1039/c5nr04540a.

2.
Nanoscale ; 8(25): 12715-22, 2016 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26287933

RESUMEN

Layered bismuth oxyhalide nanomaterials have received much more interest as promising photocatalysts because of their unique layered structures and high photocatalytic performance, which can be used as potential inorganic photosensitizers in tumor photodynamic therapy (PDT). In recent years, photocatalytic materials have been widely used in PDT and photothermal therapy (PTT) as inorganic photosensitizers. This investigation focuses on applying layered bismuth oxyhalide nanomaterials toward cancer PDT, an application that has never been reported so far. The results of our study indicate that the efficiency of UV-triggered PDT was highest when using BiOCl nanoplates followed by BiOCl nanosheets, and then TiO2. Of particular interest is the fact that layered BiOCl nanomaterials showed excellent PDT effects under low nanomaterial dose (20 µg mL(-1)) and low UV dose (2.2 mW cm(-2) for 10 min) conditions, while TiO2 showed almost no therapeutic effect under the same parameters. BiOCl nanoplates and nanosheets have shown excellent performance and an extensive range of applications in PDT.


Asunto(s)
Bismuto/química , Nanoestructuras , Fotoquimioterapia , Fármacos Fotosensibilizantes/química , Humanos , Células MCF-7 , Neoplasias/tratamiento farmacológico
3.
Adv Healthc Mater ; 4(10): 1526-36, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26010821

RESUMEN

White TiO2 nanoparticles (NPs) have been widely used for cancer photodynamic therapy based on their ultraviolet light-triggered properties. To date, biomedical applications using white TiO2 NPs have been limited, since ultraviolet light is a well-known mutagen and shallow penetration. This work is the first report about hydrogenated black TiO2 (H-TiO2 ) NPs with near infrared absorption explored as photothermal agent for cancer photothermal therapy to circumvent the obstacle of ultraviolet light excitation. Here, it is shown that photothermal effect of H-TiO2 NPs can be attributed to their dramatically enhanced nonradiative recombination. After polyethylene glycol (PEG) coating, H-TiO2 -PEG NPs exhibit high photothermal conversion efficiency of 40.8%, and stable size distribution in serum solution. The toxicity and cancer therapy effect of H-TiO2 -PEG NPs are relative systemically evaluated in vitro and in vivo. The findings herein demonstrate that infrared-irradiated H-TiO2 -PEG NPs exhibit low toxicity, high efficiency as a photothermal agent for cancer therapy, and are promising for further biomedical applications.


Asunto(s)
Rayos Infrarrojos , Titanio/química , Animales , Temperatura Corporal/efectos de la radiación , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Humanos , Hidrógeno/química , Células MCF-7 , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Ratones , Ratones Endogámicos BALB C , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Fotoquimioterapia , Polietilenglicoles/química , Distribución Tisular/efectos de los fármacos , Distribución Tisular/efectos de la radiación , Trasplante Heterólogo
4.
Biomaterials ; 35(25): 7058-67, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24855961

RESUMEN

Photodynamic therapy (PDT) is a promising treatment modality for cancer and other malignant diseases, however safety and efficacy improvements are required before it reaches its full potential and wider clinical use. Herein, we investigated a highly efficient and safe photodynamic therapy procedure by developing a high/low power density photodynamic therapy mode (high/low PDT mode) using methoxypoly(ethylene glycol) thiol (mPEG-SH) modified gold nanorod (GNR)-AlPcS4 photosensitizer complexes. mPEG-SH conjugated to the surface of simple polyelectrolyte-coated GNRs was verified using Fourier transform infrared spectroscopy; this improved stability, reduced cytotoxicity, and increased the encapsulation and loading efficiency of the nanoparticle dispersions. The GNR-photosensitizer complexes were exposed to the high/low PDT mode (high light dose = 80 mW/cm(2) for 0.5 min; low light dose = 25 mW/cm(2) for 1.5 min), and a high PDT efficacy leads to approximately 90% tumor cell killing. Due to synergistic plasmonic photothermal properties of the complexes, the high/low PDT mode demonstrated improved efficacy over using single wavelength continuous laser irradiation. Additionally, no significant loss in viability was observed in cells exposed to free AlPcS4 photosensitizer under the same irradiation conditions. Consequently, free AlPcS4 released from GNRs prior to cellular entry did not contribute to cytotoxicity of normal cells or impose limitations on the use of the high power density laser. This high/low PDT mode may effectively lead to a safer and more efficient photodynamic therapy for superficial tumors.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Nanopartículas del Metal/química , Fotoquimioterapia , Fármacos Fotosensibilizantes/química , Supervivencia Celular/efectos de los fármacos , Oro/química , Humanos , Indoles/química , Células MCF-7 , Microscopía Confocal , Nanotubos/química , Compuestos Organometálicos/química
6.
J Biomed Nanotechnol ; 9(4): 539-50, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23621012

RESUMEN

Due to their low cost, photocatalytic properties, and unique surface chemistry, titanium dioxide (TiO2) nanoparticles are among the most widely used nanoparticles in industry today. Over the last decade, TiO2 nanoparticles have also been chemically and biologically enhanced to create TiO2 bionanoconjugates that can be used for biological applications such as imaging and manipulating desired biological structures. This review particularly focuses on the manner in which these specific chemical and biological modifications in TiO2 bionanoconjugates alter pre and post photoexcitation events to enable precision degradation of intracellular biological structures. Secondary emphasis is given to imaging aspects when necessary to understanding the effects that targeting these bionanoconjugates has on degradation of neighboring biological structures. The advantages of TiO2 bionanoconjugates to standard techniques, as well as future research directions, are also discussed.


Asunto(s)
Materiales Biocompatibles/farmacología , Espacio Intracelular/metabolismo , Nanoconjugados/química , Nanotecnología/métodos , Titanio/química , Propiedades de Superficie
7.
Integr Biol (Camb) ; 5(1): 133-43, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22968372

RESUMEN

Chemically and biologically modified nanoparticles are increasingly considered as viable and multifunctional tools to be used in cancer theranostics. Herein, we demonstrate that coordination of alizarin blue black B (ABBB) to the TiO(2) nanoparticle surface enhances the resulting nanoparticles by (1) creating distinct fluorescence emission spectra that differentiate smaller TiO(2) nanoparticles from larger TiO(2) nanoparticle aggregates (both in vitro and intracellular) and (2) enhancing visible light activation of TiO(2) nanoparticles above previously described methods to induce in vitro and intracellular damage to DNA and other targets. ABBB-TiO(2) nanoparticles are characterized through sedimentation, spectral absorbance, and gel electrophoresis. The possible coordination modes of ABBB to the TiO(2) nanoparticle surface are modeled by computational methods. Fluorescence emission spectroscopy studies indicate that ABBB coordination on TiO(2) nanoparticles enables discernment between nanoparticles and nanoparticle aggregates both in vitro and intracellular through fluorescence confocal microscopy. Visible light activated ABBB-TiO(2) nanoparticles are capable of inflicting increased DNA cleavage through localized production of reactive oxygen species as visualized by plasmid DNA damage detected through gel electrophoresis and atomic force microscopy. Finally, visible light excited ABBB-TiO(2) nanoparticles are capable of inflicting damage upon HeLa (cervical cancer) cells by inducing alterations in DNA structure and membrane associated proteins. The multifunctional abilities of these ABBB-TiO(2) nanoparticles to visualize and monitor aggregation in real time, as well as inflict visible light triggered damage upon cancer targets will enhance the use of TiO(2) nanoparticles in cancer theranostics.


Asunto(s)
Aumento de la Imagen/métodos , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Nanopartículas/química , Titanio/química , Medios de Contraste , Ensayo de Materiales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA