Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Diagnostics (Basel) ; 14(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38667441

RESUMEN

We have demonstrated in canines that somatic nerve transfer to vesical branches of the inferior hypogastric plexus (IHP) can be used for bladder reinnervation after spinal root injury. Yet, the complex anatomy of the IHP hinders the clinical application of this repair strategy. Here, using human cadavers, we clarify the spatial relationships of the vesical branches of the IHP and nearby pelvic ganglia, with the ureteral orifice of the bladder. Forty-four pelvic regions were examined in 30 human cadavers. Gross post-mortem and intra-operative approaches (open anterior abdominal, manual laparoscopic, and robot-assisted) were used. Nerve branch distances and diameters were measured after thorough visual inspection and gentle dissection, so as to not distort tissue. The IHP had between 1 to 4 vesical branches (2.33 ± 0.72, mean ± SD) with average diameters of 0.51 ± 0.06 mm. Vesical branches from the IHP arose from a grossly visible pelvic ganglion in 93% of cases (confirmed histologically). The pelvic ganglion was typically located 7.11 ± 6.11 mm posterolateral to the ureteral orifice in 69% of specimens. With this in-depth characterization, vesical branches from the IHP can be safely located both posterolateral to the ureteral orifice and emanating from a more proximal ganglionic enlargement during surgical procedures.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38497126

RESUMEN

In pilot work we showed that somatic nerve transfers can restore motor function in long-term decentralized dogs. We continue to explore the effectiveness of motor reinnervation in 30 female dogs. After anesthesia, 12 underwent bilateral transection of coccygeal and sacral (S) spinal roots, dorsal roots of lumbar (L)7, and hypogastric nerves. Twelve months post-decentralization, 8 underwent transfer of obturator nerve branches to pelvic nerve vesical branches, and sciatic nerve branches to pudendal nerves, followed by 10 months recovery (ObNT-ScNT Reinn). The remaining 4 were euthanized 18 months post-decentralization (Decentralized). Results were compared to 18 Controls. Squat-and-void postures were tracked during awake cystometry. None showed squat-and-void postures during the decentralization phase. Seven of 8 ObNT-ScNT Reinn began showing such postures by 6 months post-reinnervation; one showed a return of defecation postures. Retrograde dyes were injected into the bladder and urethra 3 weeks prior to euthanasia, at which point, roots and transferred nerves were electrically stimulated to evaluate motor function. Upon L2-L6 root stimulation, 5 of 8 ObNT-ScNT Reinn showed elevated detrusor pressure and 4 showed elevated urethral pressure, compared to L7-S3 root stimulation. After stimulation of sciatic-to-pudendal transferred nerves, 3 of 8 ObNT-ScNT Reinn showed elevated urethral pressure; all showed elevated anal sphincter pressure. Retrogradely labeled neurons were observed in L2-L6 ventral horns (in laminae VI, VIII and IX) of ObNT-ScNT Reinn, versus Controls in which labeled neurons were observed in L7-S3 ventral horns (in lamina VII). This data supports the use of nerve transfer techniques for restoration of bladder function.

3.
Neurosurgery ; 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38224237

RESUMEN

BACKGROUND AND OBJECTIVES: Cervical spinal cord injury results in devastating loss of function. Nerve transfers can restore functional use of the hand, the highest priority function in this population to gain independence. Transfer of radial nerve branches innervating the supinator to the posterior interosseous nerve (SUP-PIN) has become a primary intervention for the recovery of hand opening, but few outcome reports exist to date. We report single-surgeon outcomes for this procedure. METHODS: The SUP-PIN transfer was performed on adults with traumatic spinal cord injury resulting in hand paralysis. Outcome measures include Medical Research Council strength grade for extension of each digit, and angles representing critical apertures: the first web space opening of the thumb, and metacarpophalangeal angle of the remaining fingers. Factors affecting these measurements, including preserved tone and spasticity of related muscles, were also assessed. RESULTS: Twenty-three adult patients with a C5-7 motor level underwent SUP-PIN transfers on 36 limbs (median age 31 years, interquartile range [21.5, 41]). The median interval from injury to surgery was 10.5 (8.2, 6.5) months, with 9 (7.5, 11) months for the acute injuries and 50 (32, 66) months for the chronic (>18 months) injuries. Outcomes were observed at a mean follow-up of 22 (14, 32.5) months. 30 (83.3%) hands recovered at least antigravity extension of the thumb and 34 (94.4%) demonstrated successful antigravity strength for the finger extensors, providing adequate opening for a functional grasp. Chronic patients (>18 months after injury) showed similar outcomes to those who had earlier surgery. Supination remained strong (at least M4) in all but a single patient and no complications were observed. CONCLUSION: SUP-PIN is a reliable procedure for recovery of finger extension. Chronic patients remain good candidates, provided innervation of target muscles is preserved. Higher C5 injuries were more likely to have poor outcomes.

4.
Oper Neurosurg (Hagerstown) ; 25(5): e267-e271, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37846140

RESUMEN

BACKGROUND AND OBJECTIVES: Spastic equinovarus foot (SEF) is a common complication of stroke and other upper motor neuron injuries. It is characterized by a plantigrade and inverted foot, often with toe curling, causing significant disability from pain, gait, and balance difficulties. Management includes physical therapy, antispasticity drugs, orthoses, chemical neurolysis, or botulinum toxin, all of which may be insufficient, sedating, or transient. Selective tibial neurotomy (STN) provides a surgical option that is effective and long-lasting. Our goal is to provide a concise description of our technique for performing the STN for treatment of SEF. We discuss the standard posterior approach with surgical variations used by other groups and a medial approach, should the posterior approach be insufficient. METHODS: A posterior leg approach allows access to the tibial nerve and its branches to the bilateral gastrocnemius muscles, soleus, posterior tibialis, and extrinsic toe flexors. A medial approach is used if the toe flexors cannot be accessed sufficiently from the posterior approach. Nerve branch targets identified by preoperative functional assessment are carefully exposed and fully neurolysed distally to identify all terminal branches to each muscle of interest before neurotomy. RESULTS: The STN is a powerful tool for treating SEF, with an immediate and lasting effect. Approximately 80% of the target muscle should be denervated to ensure long-term efficacy while maintaining adequate function of the muscle through collateral innervation. CONCLUSION: The STN is a safe and effective outpatient procedure that can be performed by an experienced nerve surgeon to improve balance and ambulation and reduce pain for patients with SEF. Large clinical trials are necessary to further establish this underutilized procedure in the United States.


Asunto(s)
Pie Equinovaro , Accidente Cerebrovascular , Humanos , Espasticidad Muscular/cirugía , Espasticidad Muscular/etiología , Pie Equinovaro/cirugía , Pie Equinovaro/etiología , Músculo Esquelético , Procedimientos Neuroquirúrgicos/efectos adversos , Accidente Cerebrovascular/cirugía
5.
Oper Neurosurg (Hagerstown) ; 25(6): e324-e329, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37729631

RESUMEN

BACKGROUND AND OBJECTIVES: Cervical spinal cord injuries (SCI) result in severe loss of function and independence. Nerve transfers have become a powerful method for restoring upper extremity function, the most critical missing function desired by this patient population. Recovery of active elbow extension allows for expansion of one's workspace to reach for objects and stabilizes control at the elbow joint. Without triceps function, a patient with a cervical SCI is rendered entirely helpless when in the supine position. Our objective was to provide a concise description of the transfer of branches of the axillary nerve (AN) to the long head of the triceps branch of the radial nerve (RN) for restoration of elbow extension after cervical SCI. METHODS: An anterior, axillary approach is used for the transfer of the nerve branches of the AN (which may include branches to the teres minor, posterior deltoid, or even middle deltoid) to the long head of the triceps branch of the RN. Preoperative assessment and intraoperative stimulation are demonstrated to direct optimal selection of axillary branch donors. RESULTS: The axillary approach provides full access to all branches of the AN in optimal proximity to triceps branches of the RN and allows for tension-free coaptation to achieve successful recovery of elbow extension. Final outcomes may not be achieved for 18 months. Of our last 20 patients with greater than 12-month follow-up, 13 have achieved antigravity strength in elbow extension, 4 are demonstrating ongoing progression, and 3 are definitive failures by 18 months. CONCLUSION: The axillary to RN transfer is an important intervention for recovery of elbow extension after cervical SCI, which significantly improves quality of life in this patient population. Further large population outcomes studies are necessary to further establish efficacy and increase awareness of these procedures.


Asunto(s)
Articulación del Codo , Transferencia de Nervios , Traumatismos de la Médula Espinal , Humanos , Nervio Radial/cirugía , Codo/cirugía , Codo/inervación , Articulación del Codo/cirugía , Transferencia de Nervios/métodos , Calidad de Vida , Traumatismos de la Médula Espinal/cirugía
6.
J Neurosurg Spine ; 39(4): 593-599, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37486876

RESUMEN

OBJECTIVE: The aim of this study was to add to the understanding of nerve branching patterns in the proximal forearm and consider optimal nerve transfer options to address the various injuries that affect the function of the upper extremity. METHODS: Eleven upper-extremity cadaveric specimens were dissected to expose the radial, median, and ulnar nerves in the proximal forearm. The site of origin of nerve branches from the major nerves was assessed, with measurements made in reference to the lateral epicondyle for the radial nerve branches and the medial epicondyle for the median and ulnar nerve branches. The distances to where these branches entered their respective muscles (muscle entry point) were assessed using the same landmarks. To plan a transfer, the length of the nerve branches was then calculated as the difference from the apparent origin from the main nerve trunk to the location where the nerve entered the muscle. Importantly, the nerve branch origin was established as the location of obvious separation from the main nerve trunk without additional fascicular dissection from the major nerve trunk. The number of branches was determined, and the diameter for each branch was measured using a Vernier caliper. RESULTS: The radial nerve branch to the extensor carpi radialis brevis (ECRB) muscle had an average length of 50.7 mm and average diameter of 1.6 mm. The mean medial and lateral lengths of the radial branches to the supinator muscle were found to be 22.2 mm (diameter 1.4 mm) and 15.3 mm (diameter 1.3 mm), respectively. The anterior interosseous nerve (AIN) branch of the median nerve was found 67.8 mm distal to the medial epicondyle with a diameter of 2.3 mm. The flexor carpi ulnaris (FCU) muscle innervation from the ulnar nerve was provided by 3 or 4 branches in most specimens. The second and third of these branches were the longest, with means of 30.5 mm (diameter 1.4 mm) and 30.7 mm (diameter 1.3 mm), respectively. CONCLUSIONS: While there is variability of the nerve branching pattern in the proximal forearm between specimens, the authors provide evidence of commonalities (branching patterns and distances) that can facilitate planning for upper-extremity nerve reconstructions. Importantly, all measurements are provided with reference to easily identified bony landmarks and to their muscle entry points to aid operative decision-making. These data complement the growing practice of nerve transfers in the upper extremity for a variety of pathologies.


Asunto(s)
Antebrazo , Transferencia de Nervios , Humanos , Antebrazo/inervación , Nervio Radial/patología , Nervio Radial/cirugía , Relevancia Clínica , Nervios Periféricos , Nervio Cubital/anatomía & histología , Músculo Esquelético , Cadáver
7.
Am J Physiol Regul Integr Comp Physiol ; 325(4): R344-R358, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37458380

RESUMEN

Very little is known about the physiological role of nicotinic receptors in canine bladders, although functional nicotinic receptors have been reported in bladders of many species. Utilizing in vitro methods, we evaluated nicotinic receptors mediating bladder function in dogs: control (9 female and 11 male normal controls, 5 sham operated), Decentralized (9 females, decentralized 6-21 mo), and obturator-to-pelvic nerve transfer reinnervated (ObNT-Reinn; 9 females; decentralized 9-13 mo, then reinnervated with 8-12 mo recovery). Muscle strips were collected, mucosa-denuded, and mounted in muscle baths before incubation with neurotransmitter antagonists, and contractions to the nicotinic receptor agonist epibatidine were determined. Strip response to epibatidine, expressed as percent potassium chloride, was similar (∼35% in controls, 30% in Decentralized, and 24% in ObNT-Reinn). Differentially, epibatidine responses in Decentralized and ObNT-Reinn bladder strips were lower than controls after tetrodotoxin (TTX, a sodium channel blocker that inhibits axonal action potentials). Yet, in all groups, epibatidine-induced strip contractions were similarly inhibited by mecamylamine and hexamethonium (ganglionic nicotinic receptor antagonists), SR 16584 (α3ß4 neuronal nicotinic receptor antagonist), atracurium and tubocurarine (neuromuscular nicotinic receptor antagonists), and atropine (muscarinic receptor antagonist), indicating that nicotinic receptors (particularly α3ß4 subtypes), neuromuscular and muscarinic receptors play roles in bladder contractility. In control bladder strips, since tetrodotoxin did not inhibit epibatidine contractions, nicotinic receptors are likely located on nerve terminals. The tetrodotoxin inhibition of epibatidine-induced contractions in Decentralized and ObNT-Reinn suggests a relocation of nicotinic receptors from nerve terminals to more distant axonal sites, perhaps as a compensatory mechanism to recover bladder function.


Asunto(s)
Transferencia de Nervios , Receptores Nicotínicos , Perros , Animales , Femenino , Masculino , Vejiga Urinaria , Tetrodotoxina/farmacología , Canal Anal , Neuronas Motoras
8.
Nucleic Acids Res ; 51(12): 6156-6171, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37158250

RESUMEN

Pathogenic Vibrio species account for 3-5 million annual life-threatening human infections. Virulence is driven by bacterial hemolysin and toxin gene expression often positively regulated by the winged helix-turn-helix (wHTH) HlyU transcriptional regulator family and silenced by histone-like nucleoid structural protein (H-NS). In the case of Vibrio parahaemolyticus, HlyU is required for virulence gene expression associated with type 3 Secretion System-1 (T3SS1) although its mechanism of action is not understood. Here, we provide evidence for DNA cruciform attenuation mediated by HlyU binding to support concomitant virulence gene expression. Genetic and biochemical experiments revealed that upon HlyU mediated DNA cruciform attenuation, an intergenic cryptic promoter became accessible allowing for exsA mRNA expression and initiation of an ExsA autoactivation feedback loop at a separate ExsA-dependent promoter. Using a heterologous E. coli expression system, we reconstituted the dual promoter elements which revealed that HlyU binding and DNA cruciform attenuation were strictly required to initiate the ExsA autoactivation loop. The data indicate that HlyU acts to attenuate a transcriptional repressive DNA cruciform to support T3SS1 virulence gene expression and reveals a non-canonical extricating gene regulation mechanism in pathogenic Vibrio species.


Asunto(s)
Vibrio parahaemolyticus , Humanos , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo , Sistemas de Secreción Tipo III/genética , ADN Cruciforme/metabolismo , Virulencia/genética , Escherichia coli/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
9.
Neurosurgery ; 93(5): 1026-1035, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37199494

RESUMEN

BACKGROUND: Spastic equinovarus foot (SEF) is a common dysfunctional foot posture after stroke that impairs balance and mobility. Selective tibial neurotomy (STN) is a simple but underutilized surgical option that can effectively address critical aspects of SEF and thereby provide enduring quality of life gains. There are few studies that examine both functional outcomes and patient satisfaction with this treatment option. OBJECTIVE: To elucidate the patient goals that motivated their decision to undergo the procedure and compare subjective and objective changes in balance and functional mobility as a consequence of surgery. METHODS: Thirteen patients with problematic SEF who had previously failed conservative measures were treated with STN. Preoperative and postoperative (on average 6 months) assessments evaluated gait quality and functional mobility. In addition, a custom survey was conducted to investigate patient perspectives on STN intervention. RESULTS: The survey showed that participants who opted for STN were dissatisfied with their previous spasticity management. The most common preoperative expectation for STN treatment was to improve walking, followed by improving balance, brace comfort, pain, and tone. Postoperatively, participants rated the improvement in their expectations and were, on average, 71 on a 100-point scale, indicating high satisfaction. The gait quality, assessed with the Gait Intervention and Assessment Tool, improved significantly between preoperative and postoperative assessment (M = -4.1, P = .01) with a higher average difference in stance of -3.3 than in swing -0.5. Improvement in both gait endurance (M = 36 m, P = .01) and self-selected gait speed (M = .12 m/s, P = .03) was statistically significant. Finally, static balance (M = 5.0, P = .03) and dynamic balance (M = 3.5, P = .02) were also significantly improved. CONCLUSION: STN improved gait quality and functional mobility and was associated with high satisfaction in patients with SEF.


Asunto(s)
Pie Equinovaro , Espasticidad Muscular , Humanos , Espasticidad Muscular/cirugía , Pie Equinovaro/cirugía , Motivación , Calidad de Vida , Nervio Tibial , Marcha
10.
J Neurosurg Spine ; 38(2): 258-264, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36208430

RESUMEN

OBJECTIVE: Bladder dysfunction after nerve injury has a variable presentation, and extent of injury determines whether the bladder is spastic or atonic. The authors have proposed a series of 3 nerve transfers for functional innervation of the detrusor muscle and external urethral sphincter, along with sensory innervation to the genital dermatome. These transfers are applicable to only cases with low spinal segment injuries (sacral nerve root function is lost) and largely preserved lumbar function. Transfer of the posterior branch of the obturator nerve to the vesical branch of the pelvic nerve provides a feasible mechanism for patients to initiate detrusor contraction by thigh adduction. External urethra innervation (motor and sensory) may be accomplished by transfer of the vastus medialis nerve to the pudendal nerve. The sensory component of the pudendal nerve to the genitalia may be further enhanced by transfer of the saphenous nerve (sensory) to the pudendal nerve. The main limitations of coapting the nerve donors to their intrapelvic targets are the bifurcation or arborization points of the parent nerve. To ensure that the donor nerves had sufficient length and diameter, the authors sought to measure these parameters. METHODS: Twenty-six pelvic and anterior thigh regions were dissected in 13 female cadavers. After the graft and donor sites were clearly exposed and the branches identified, the donor nerves were cut at suitable distal sites and then moved into the pelvis for tensionless anastomosis. Diameters were measured with calipers. RESULTS: The obturator nerve was bifurcated a mean ± SD (range) of 5.5 ± 1.7 (2.0-9.0) cm proximal to the entrance of the obturator foramen. In every cadaver, the authors were able to bring the posterior division of the obturator nerve to the vesical branch of the pelvic nerve (located internal to the ischial spine) in a tensionless manner with an excess obturator nerve length of 2.0 ± 1.2 (0.0-5.0) cm. The distance between the femoral nerve arborization and the anterior superior iliac spine was 9.3 ± 1.8 (6.5-15.0) cm, and the distance from the femoral arborization to the ischial spine was 12.9 ± 1.4 (10.0-16.0) cm. Diameters were similar between donor and recipient nerves. CONCLUSIONS: The chosen donor nerves were long enough and of sufficient caliber for the proposed nerve transfers and tensionless anastomosis.


Asunto(s)
Transferencia de Nervios , Humanos , Femenino , Vejiga Urinaria/cirugía , Vejiga Urinaria/inervación , Estudios de Factibilidad , Nervios Espinales , Cadáver
11.
R Soc Open Sci ; 9(8): 211560, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35950193

RESUMEN

Zinc oxide (ZnO) is an attractive material for microscale and nanoscale devices. Its desirable semiconductor, piezoelectric and optical properties make it useful in applications ranging from microphones to missile warning systems to biometric sensors. This work introduces a demonstration of blending statistics and chemical etching of thin films to identify the dominant factors and interaction between factors, and develop statistically enhanced models on etch rate and selectivity of c-axis-oriented nanocrystalline ZnO thin films. Over other mineral acids, ammonium chloride (NH4Cl) solutions have commonly been used to wet etch microscale ZnO devices because of their controllable etch rate and near-linear behaviour. Etchant concentration and temperature were found to have a significant effect on etch rate. Moreover, this is the first demonstration that has identified multi-factor interactions between temperature and concentration, and between temperature and agitation. A linear model was developed relating etch rate and its variance against these significant factors and multi-factor interactions. An average selectivity of 73 : 1 was measured with none of the experimental factors having a significant effect on the selectivity. This statistical study captures the significant variance observed by other researchers. Furthermore, it enables statistically enhanced microfabrication processes for other materials.

12.
Exp Neurol ; 353: 114054, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35341748

RESUMEN

Nerve transfers have become a powerful intervention to restore function following devastating paralyzing injuries. A major limitation to peripheral nerve repair and reconstructive strategies is the progressive, fibrotic degeneration of the distal nerve and denervated muscle, eventually precluding recovery of these targets and thus defining a time window within which reinnervation must occur. One proven strategy in the clinic has been the sacrifice and transfer of an adjacent distal motor nerve to provide axons to occupy, and thus preserve (or "babysit"), the target muscle. However, available nearby nerves are limited in severe brachial plexus or spinal cord injury. An alternative and novel proposition is the transplantation of spinal motor neurons (SMNs) derived from human induced pluripotent stem cells (iPSCs) into the target nerve to extend their axons to occupy and preserve the targets. These cells could potentially be delivered through minimally invasive or percutaneous techniques. Several reports have demonstrated survival, functional innervation, and muscular preservation following transplantation of SMNs into rodent nerves. Advances in the generation, culture, and differentiation of human iPSCs now offer the possibility for an unlimited supply of clinical grade SMNs. This review will discuss the previous reports of peripheral SMN transplantation, outline key considerations, and propose next steps towards advancing this approach to clinic. Stem cells have garnered great enthusiasm for their potential to revolutionize medicine. However, this excitement has often led to premature clinical studies with ill-defined cell products and mechanisms of action, particularly in spinal cord injury. We believe the peripheral transplantation of a defined SMN population to address neuromuscular degeneration will be transformative in augmenting current reconstructive strategies. By thus removing the current barriers of time and distance, this strategy would dramatically enhance the potential for reconstruction and functional recovery in otherwise hopeless paralyzing injuries. Furthermore, this strategy may be used as a permanent axon replacement following destruction of lower motor neurons and would enable exogenous stimulation options, such as pacing of transplanted SMN axons in the phrenic nerve to avoid mechanical ventilation in high cervical cord injury or amyotrophic lateral sclerosis.


Asunto(s)
Células Madre Pluripotentes Inducidas , Traumatismos de la Médula Espinal , Axones/fisiología , Tratamiento Basado en Trasplante de Células y Tejidos , Humanos , Células Madre Pluripotentes Inducidas/trasplante , Neuronas Motoras/fisiología , Regeneración Nerviosa/fisiología
13.
PLoS One ; 17(3): e0264382, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35231045

RESUMEN

This study aimed to identify potential lateralization of bladder function. Electrical stimulation of spinal roots or the pelvic nerve's anterior vesical branch was performed bilaterally in female dogs. The percent difference between the left and right stimulation-induced increased detrusor pressure was determined. Bladders were considered left or right-sided if differences were greater or less than 25% or 10%. Based on differences of 25%, upon stimulation of spinal roots, bladders were left-sided in 17/44 (38.6%), right-sided in 12/44 (27.2%) and bilateral in 15/44 (34.2%). Using ± 10%, 48% had left side dominance (n = 21/44), 39% had right side dominance (n = 17/44), and 14% were bilateral (n = 6/44). With stimulation of the pelvic nerve's anterior vesical branch in 19 dogs, bladders were left-sided in 8 (42.1%), right-sided in 6 (31.6%) and bilateral in 5 (26.3%) using 25% differences and left side dominance in 8 (43%), right sided in 7 (37%) and bilateral in 4 (21%) using 10% differences. These data suggest lateralization of innervation of the female dog bladder with left- and right-sided lateralization occurring at similar rates. Lateralization often varied at different spinal cord levels within the same animal.


Asunto(s)
Perros/fisiología , Raíces Nerviosas Espinales/fisiología , Nervios Espinales/fisiología , Vejiga Urinaria/fisiología , Fenómenos Fisiológicos del Sistema Urinario , Animales , Estimulación Eléctrica , Femenino
15.
Oper Neurosurg (Hagerstown) ; 21(5): E408-E413, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34392370

RESUMEN

BACKGROUND: Cervical spinal cord injuries result in a severe loss of function and independence. The primary goal for these patients is the restoration of hand function. Nerve transfers have recently become a powerful intervention to restore the ability to grasp and release objects. The supinator muscle, although a suboptimal tendon transfer donor, serves as an ideal distal nerve donor for reconstructive strategies of the hand. This transfer is also applicable to lower brachial plexus injuries. OBJECTIVE: To describe the supinator to posterior interosseous nerve transfer with the goal of restoring finger extension following spinal cord or lower brachial plexus injury. METHODS: Nerve branches to the supinator muscle are transferred to the posterior interosseous nerve supplying the finger extensor muscles in the forearm. RESULTS: The supinator to posterior interosseous nerve transfer is effective in restoring finger extension following spinal cord or lower brachial plexus injury. CONCLUSION: This procedure represents an optimal nerve transfer as the donor nerve is adjacent to the target nerve and its associated muscles. The supinator muscle is innervated by the C5-6 nerve roots and is often available in cases of cervical SCI and injuries of the lower brachial plexus. Additionally, supination function is retained by supination action of the biceps muscle.


Asunto(s)
Neuropatías del Plexo Braquial , Plexo Braquial , Transferencia de Nervios , Plexo Braquial/cirugía , Neuropatías del Plexo Braquial/cirugía , Dedos/cirugía , Antebrazo , Humanos
16.
Data Brief ; 37: 107241, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34235238

RESUMEN

Long non-coding RNA (lncRNA)/microRNA (miRNA)/messenger RNA (mRNA) interactions regulate oncogenesis and tumour suppression in breast cancer. Oncogenic lncRNA/miRNA/mRNA axes may offer novel therapeutic targets; therefore, identifying such axes is a clinically relevant undertaking. To explore miRNAs regulated by oncogenic lncRNAs, we queried the NCBI Gene Expression Omnibus (GEO) database to find datasets that profiled gene expression changes upon lncRNA knockdown in breast cancer. We identified four microarray datasets that permitted our interrogation of genes regulated by lncRNAs LincK, LincIN, SPRY4-IT1 and AC009283.1. We specifically analysed changes in miRNA transcripts within these datasets to study miRNAs regulated by each of the four lncRNAs. We subsequently identified the predicted mRNA targets for these miRNAs to uncover possible lncRNA/miRNA/mRNAs axes in breast cancer. These axes may be candidates for future investigation of gene regulation in breast cancer.

17.
Cancers (Basel) ; 13(11)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34072264

RESUMEN

Triple-negative breast cancers (TNBCs) are aggressive, lack targeted therapies and are enriched in cancer stem cells (CSCs). Novel therapies which target CSCs within these tumors would likely lead to improved outcomes for TNBC patients. Long non-coding RNAs (lncRNAs) are potential therapeutic targets for TNBC and CSCs. We demonstrate that lncRNA prostate androgen regulated transcript 1 (PART1) is enriched in TNBCs and in Aldefluorhigh CSCs, and is associated with worse outcomes among basal-like breast cancer patients. Although PART1 is androgen inducible in breast cancer cells, analysis of patient tumors indicates its androgen regulation has minimal clinical impact. Knockdown of PART1 in TNBC cell lines and a patient-derived xenograft decreased cell proliferation, migration, tumor growth, and mammosphere formation potential. Transcriptome analyses revealed that the lncRNA affects expression of hundreds of genes (e.g., myosin-Va, MYO5A; zinc fingers and homeoboxes protein 2, ZHX2). MiRNA 4.0 GeneChip and TaqMan assays identified multiple miRNAs that are regulated by cytoplasmic PART1, including miR-190a-3p, miR-937-5p, miR-22-5p, miR-30b-3p, and miR-6870-5p. We confirmed the novel interaction between PART1 and miR-937-5p. In general, miRNAs altered by PART1 were less abundant than PART1, potentially leading to cell line-specific effects in terms miRNA-PART1 interactions and gene regulation. Together, the altered miRNA landscape induced by PART1 explains most of the protein-coding gene regulation changes (e.g., MYO5A) induced by PART1 in TNBC.

18.
Mol Oncol ; 15(8): 2046-2064, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33932086

RESUMEN

Paclitaxel is a common breast cancer drug; however, some tumors are resistant. The identification of biomarkers for paclitaxel resistance or sensitivity would enable the development of strategies to improve treatment efficacy. A genome-wide in vivo shRNA screen was performed on paclitaxel-treated mice with MDA-MB-231 tumors to identify genes associated with paclitaxel sensitivity or resistance. Gene expression of the top screen hits was associated with tumor response (resistance or sensitivity) among patients who received neoadjuvant chemotherapy containing paclitaxel. We focused our validation on screen hit B-cell lymphoma 6 (BCL6), which is a therapeutic target in cancer but for which no effects on drug response have been reported. Knockdown of BCL6 resulted in increased tumor regression in mice treated with paclitaxel. Similarly, inhibiting BCL6 using a small molecule inhibitor enhanced paclitaxel treatment efficacy both in vitro and in vivo in breast cancer models. Mechanism studies revealed that reduced BCL6 enhances the efficacy of paclitaxel by inducing sustained G1/S arrest, concurrent with increased apoptosis and expression of target gene cyclin-dependent kinase inhibitor 1A. In summary, the genome-wide shRNA knockdown screen has identified BCL6 as a potential targetable resistance biomarker of paclitaxel response in breast cancer.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Resistencia a Antineoplásicos/genética , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Antineoplásicos Fitogénicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Proteínas Proto-Oncogénicas c-bcl-6/genética , ARN Interferente Pequeño
19.
Cancer Lett ; 509: 81-88, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33848519

RESUMEN

Therapeutic effectiveness in breast cancer can be limited by the underlying mechanisms of pathogenesis, including epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs) and drug resistance. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are master regulators of gene expression and are functionally important mediators in these mechanisms of pathogenesis. Intricate crosstalks between these non-coding RNAs form complex regulatory networks of post-transcriptional gene regulation. Depending on the specific lncRNA/miRNA interaction, the lncRNA-miRNA axis can have tumor suppressor or oncogenic effects, thus defining the lncRNA-miRNA axis is important for determining targetability. Herein, we summarize the current literature describing lncRNA-miRNA interactions that are critical in the molecular mechanisms that regulate EMT, CSCs and drug resistance in breast cancer. Further, we review both the well-studied and potential novel mechanisms of lncRNA-miRNA interactions in breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , MicroARNs/metabolismo , Células Madre Neoplásicas/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , ARN Largo no Codificante/genética , Transducción de Señal
20.
Am J Physiol Regul Integr Comp Physiol ; 320(6): R897-R915, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33759573

RESUMEN

We determined the effect of pelvic organ decentralization and reinnervation 1 yr later on urinary bladder histology and function. Nineteen canines underwent decentralization by bilateral transection of all coccygeal and sacral (S) spinal roots, dorsal roots of lumbar (L)7, and hypogastric nerves. After exclusions, eight were reinnervated 12 mo postdecentralization with obturator-to-pelvic and sciatic-to-pudendal nerve transfers, then euthanized 8-12 mo later. Four served as long-term decentralized only animals. Before euthanasia, pelvic or transferred nerves and L1-S3 spinal roots were stimulated and maximum detrusor pressure (MDP) recorded. Bladder specimens were collected for histological and ex vivo smooth muscle contractility studies. Both reinnervated and decentralized animals showed less or denuded urothelium, fewer intramural ganglia, and more inflammation and collagen, than controls, although percent muscle was maintained. In reinnervated animals, pgp9.5+ axon density was higher compared with decentralized animals. Ex vivo smooth muscle contractions in response to KCl correlated positively with submucosal inflammation, detrusor muscle thickness, and pgp9.5+ axon density. In vivo, reinnervated animals showed higher MDP after stimulation of L1-L6 roots compared with their transected L7-S3 roots, and reinnervated and decentralized animals showed lower MDP than controls after stimulation of nerves (due likely to fibrotic nerve encapsulation). MDP correlated negatively with detrusor collagen and inflammation, and positively with pgp9.5+ axon density and intramural ganglia numbers. These results demonstrate that bladder function can be improved by transfer of obturator nerves to pelvic nerves at 1 yr after decentralization, although the fibrosis and inflammation that developed were associated with decreased contractile function.


Asunto(s)
Músculo Liso/fisiopatología , Transferencia de Nervios , Traumatismos de la Médula Espinal/fisiopatología , Nervios Espinales/fisiopatología , Vejiga Urinaria/inervación , Animales , Perros , Estimulación Eléctrica/métodos , Contracción Muscular/fisiología , Regeneración Nerviosa/fisiología , Transferencia de Nervios/métodos , Raíces Nerviosas Espinales/fisiopatología , Vejiga Urinaria/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...