Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Biol ; 227(4)2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38269486

RESUMEN

Climate change threatens the survival of symbiotic cnidarians by causing photosymbiosis breakdown in a process known as bleaching. Direct effects of temperature on cnidarian host physiology remain difficult to describe because heatwaves depress symbiont performance, leading to host stress and starvation. The symbiotic sea anemone Exaiptasia diaphana provides an opportune system to disentangle direct versus indirect heat effects on the host, as it can survive indefinitely without symbionts. We tested the hypothesis that heat directly impairs cnidarian physiology by comparing symbiotic and aposymbiotic individuals of two laboratory subpopulations of a commonly used clonal strain of E. diaphana, CC7. We exposed anemones to a range of temperatures (ambient, +2°C, +4°C and +6°C) for 15-18 days, then measured their symbiont population densities, autotrophic carbon assimilation and translocation, photosynthesis, respiration and host intracellular pH (pHi). Symbiotic anemones from the two subpopulations differed in size and symbiont density and exhibited distinct heat stress responses, highlighting the importance of acclimation to different laboratory conditions. Specifically, the cohort with higher initial symbiont densities experienced dose-dependent symbiont loss with increasing temperature and a corresponding decline in host photosynthate accumulation. In contrast, the cohort with lower initial symbiont densities did not lose symbionts or assimilate less photosynthate when heated, similar to the response of aposymbiotic anemones. However, anemone pHi decreased at higher temperatures regardless of cohort, symbiont presence or photosynthate translocation, indicating that heat consistently disrupts cnidarian acid-base homeostasis independent of symbiotic status or mutualism breakdown. Thus, pH regulation may be a critical vulnerability for cnidarians in a changing climate.


Asunto(s)
Dinoflagelados , Anémonas de Mar , Humanos , Animales , Anémonas de Mar/fisiología , Fisiología Comparada , Simbiosis , Respuesta al Choque Térmico , Homeostasis , Dinoflagelados/fisiología
2.
Proc Natl Acad Sci U S A ; 120(52): e2312104120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38113265

RESUMEN

Increasingly frequent marine heatwaves are devastating coral reefs. Corals that survive these extreme events must rapidly recover if they are to withstand subsequent events, and long-term survival in the face of rising ocean temperatures may hinge on recovery capacity and acclimatory gains in heat tolerance over an individual's lifespan. To better understand coral recovery trajectories in the face of successive marine heatwaves, we monitored the responses of bleaching-susceptible and bleaching-resistant individuals of two dominant coral species in Hawai'i, Montipora capitata and Porites compressa, over a decade that included three marine heatwaves. Bleaching-susceptible colonies of P. compressa exhibited beneficial acclimatization to heat stress (i.e., less bleaching) following repeat heatwaves, becoming indistinguishable from bleaching-resistant conspecifics during the third heatwave. In contrast, bleaching-susceptible M. capitata repeatedly bleached during all successive heatwaves and exhibited seasonal bleaching and substantial mortality for up to 3 y following the third heatwave. Encouragingly, bleaching-resistant individuals of both species remained pigmented across the entire time series; however, pigmentation did not necessarily indicate physiological resilience. Specifically, M. capitata displayed incremental yet only partial recovery of symbiont density and tissue biomass across both bleaching phenotypes up to 35 mo following the third heatwave as well as considerable partial mortality. Conversely, P. compressa appeared to recover across most physiological metrics within 2 y and experienced little to no mortality. Ultimately, these results indicate that even some visually robust, bleaching-resistant corals can carry the cost of recurring heatwaves over multiple years, leading to divergent recovery trajectories that may erode coral reef resilience in the Anthropocene.


Asunto(s)
Antozoos , Humanos , Animales , Antozoos/fisiología , Arrecifes de Coral , Temperatura , Aclimatación/fisiología , Biomasa
3.
Ecol Evol ; 13(12): e10798, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38099138

RESUMEN

Back-to-back marine heatwaves in 2016 and 2017 resulted in severe coral bleaching and mortality across the Great Barrier Reef (GBR). Encouragingly, some corals that survived these events exhibit increased bleaching resistance and may represent thermally tolerant populations that can better cope with ocean warming. Using the GBR as a natural laboratory, we investigated whether a history of minimal (Heron Island) or severe (Lizard Island) coral bleaching in 2016 and 2017 equates to stress tolerance in a successive heatwave (2020). We examined the genetic diversity, physiological performance, and trophic plasticity of juvenile (<10 cm) and adult (>25 cm) corals of two common genera (Pocillopora and Stylophora). Despite enduring greater cumulative heat stress (6.3°C week-1 vs. 5.6°C week-1), corals that experienced the third marine heatwave in 5 years (Lizard) exhibited twice as high survival and visual bleaching thresholds compared to corals that had not experienced significant bleaching in >10 years (Heron). Surprisingly, only one shared host-Symbiodiniaceae association was uncovered between locations (Stylophora pistillata-Cladocopium "C8 group") and there was no genetic overlap in Pocillopora-Cladocopium partnerships, suggesting turnover in species composition from recent marine heatwaves. Corals within the species complex Pocillopora that survived the 2016 and 2017 marine heatwaves at Lizard Island were the most resilient, exhibiting three times greater calcification rates than conspecifics at Heron Island. Further, surviving corals (Lizard) had distinct isotopic niches, lower host carbon, and greater host protein, while conspecifics that had not experienced recent bleaching (Heron) had two times greater symbiont carbon content, suggesting divergent trophic strategies that influenced survival (i.e., greater reliance on heterotrophy vs. symbiont autotrophy, respectively). Ultimately, while corals may experience less bleaching and survive repeated thermal stress events, species-specific trade-offs do occur, leaving open many questions related to the long-term health and recovery of coral reef ecosystems in the face of intensifying marine heatwaves.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA