Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Eukaryot Microbiol ; : e13031, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725295

RESUMEN

The salamander, Ambystoma annulatum, is considered a "species of special concern" in the state of Arkansas, USA, due to its limited geographic range, specialized habitat requirements and low population size. Although metazoan parasites have been documented in this salamander species, neither its native protists nor microbiome have yet been evaluated. This is likely due to the elusive nature and under-sampling of the animal. Here, we initiate the cataloguing of microbial associates with the identification of a new heterlobosean species, Naegleria lustrarea n. sp. (Excavata, Discoba, Heterolobosea), isolated from feces of an adult A. annulatum.

2.
Eur J Protistol ; 94: 126082, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38703601

RESUMEN

Many terrestrial microbes have evolved cell behaviors that help them rise above their substrate, often to facilitate dispersal. One example of these behaviors is found in the amoebae of Sappinia pedata, which actively lift most of their cell mass above the substrate, known as standing. This standing behavior was first described in S. pedata in the 1890s from horse dung isolates but never molecularly characterized from dung. Our study expands this understanding, revealing the first molecularly confirmed S. pedata from herbivore dung in Mississippi, USA, and describing a new species, Sappinia dangeardi n. sp., with larger trophozoite cells. Additionally, we isolated another standing amoeba, Thecamoeba homeri n. sp., from soil, exhibiting a previously unreported "doughnut shape" transient behavior. In S. dangeardi n. sp., we discovered that standing is likely triggered by substrate drying, and that actin filaments actively localize in the "stalk" to support the standing cells, as observed through confocal microscopy. While the purpose of standing behaviors has not been investigated, we hypothesize it is energetically expensive and therefore a significant evolutionary strategy in these organisms. Overall, this study emphasizes behavioral adaptations to terrestrial environments within Amoebozoa, stressing the importance of diverse laboratory conditions that replicate natural habitats.

3.
Eur J Protistol ; 94: 126083, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38640576

RESUMEN

The frequently encountered macroscopic slime molds of the genus Ceratiomyxa have long been recognized by mycologists and protistologists for hundreds of years. These organisms are amoebozoan amoebae that live and grow inside and on the surface of decaying wood. When conditions are favorable, they form subaerial sporulating structures called fruiting bodies which take on a variety of forms. These forms are typically some arrangement of column and/or branches, but one is uniquely poroid, forming folds instead. Originally, this poroid morphology was designated as its own species. However, it was not always clear what significance fruiting body morphology held in determining species. Currently, Ceratiomyxa fruticulosa var. porioides, the poroid form, is considered a taxonomic variety of Ceratiomyxa fruticulosa based on morphological designation alone. Despite its long history of observation and study, the genus Ceratiomyxa has been paid little molecular attention to alleviate these morphological issues. We have obtained the first transcriptomes of the taxon C. fruticulosa var. porioides and found single gene phylogenetic and multigene phylogenomic support to separate it from C. fruticulosa. This provides molecular evidence that fruiting body morphology does correspond to species level diversity. Therefore, we formally raise Ceratiomyxa porioides to species level.

4.
J Eukaryot Microbiol ; 71(3): e13020, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38240465

RESUMEN

Biological soil crusts represent a rich habitat for diverse and complex eukaryotic microbial communities. A unique but extremely common habitat is the urban sidewalk and its cracks that collect detritus. While these habitats are ubiquitous across the globe, little to no work has been conducted to characterize protists found there. Amoeboid protists are major predators of bacteria and other microbial eukaryotes in these microhabitats and therefore play a substantial ecological role. From sidewalk crack soil crusts, we have isolated three naked amoebae with finely tapered subpseudopodia, and a simple life cycle consisting of a trophic amoeba and a cyst stage. Using a holistic approach including light, electron, and fluorescence microscopy as well as phylogenetics using the ribosomal small subunit rRNA gene and phylogenomics using 230 nuclear genes, we find that these amoeboid organisms fail to match any previously described eukaryote genus. However, we determined the amoebae belong to the amoebozoan lineage Variosea based on phylogenetics. The molecular analyses place our isolates in two novel genera forming a grade at the base of the variosean group Protosteliida. These three novel varioseans among two novel genera and species are herein named "Kanabo kenzan" and "Parakanabo toge."


Asunto(s)
Amebozoos , Filogenia , Amebozoos/clasificación , Amebozoos/genética , Amebozoos/aislamiento & purificación , Suelo/parasitología , Ecosistema , ADN Protozoario/genética , Ciudades
5.
Curr Protoc ; 4(1): e969, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38265166

RESUMEN

PhyloFisher is a software package written primarily in Python3 that can be used for the creation, analysis, and visualization of phylogenomic datasets that consist of protein sequences from eukaryotic organisms. Unlike many existing phylogenomic pipelines, PhyloFisher comes with a manually curated database of 240 protein-coding genes, a subset of a previous phylogenetic dataset sampled from 304 eukaryotic taxa. The software package can also utilize a user-created database of eukaryotic proteins, which may be more appropriate for shallow evolutionary questions. PhyloFisher is also equipped with a set of utilities to aid in running routine analyses, such as the prediction of alternative genetic codes, removal of genes and/or taxa based on occupancy/completeness of the dataset, testing for amino acid compositional heterogeneity among sequences, removal of heterotachious and/or fast-evolving sites, removal of fast-evolving taxa, supermatrix creation from randomly resampled genes, and supermatrix creation from nucleotide sequences. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Constructing a phylogenomic dataset Basic Protocol 2: Performing phylogenomic analyses Support Protocol 1: Installing PhyloFisher Support Protocol 2: Creating a custom phylogenomic database.


Asunto(s)
Aminoácidos , Evolución Biológica , Filogenia , Secuencia de Aminoácidos , Cultura
6.
Mod Pathol ; 37(3): 100419, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38158125

RESUMEN

Due to their increased cancer risk, patients with longstanding inflammatory bowel disease are offered endoscopic surveillance with concomitant histopathologic assessments, aimed at identifying dysplasia as a precursor lesion of colitis-associated colorectal cancer. However, this strategy is beset with difficulties and limitations. Recently, a novel classification criterion for colitis-associated low-grade dysplasia has been proposed, and an association between nonconventional dysplasia and progression was reported, suggesting the possibility of histology-based stratification of patients with colitis-associated lesions. Here, a cohort of colitis-associated lesions was assessed by a panel of 6 experienced pathologists to test the applicability of the published classification criteria and try and validate the association between nonconventional dysplasia and progression. While confirming the presence of different morphologic patterns of colitis-associated dysplasia, the study demonstrated difficulties concerning diagnostic reproducibility between pathologists and was unable to validate the association of nonconventional dysplasia with cancer progression. Our study highlights the overall difficulty of using histologic assessment of precursor lesions for cancer risk prediction in inflammatory bowel disease patients and suggests the need for a different diagnostic strategy that can objectively identify high-risk phenotypes.


Asunto(s)
Colitis Ulcerosa , Colitis , Neoplasias Colorrectales , Enfermedades Inflamatorias del Intestino , Neoplasias , Humanos , Reproducibilidad de los Resultados , Colitis/complicaciones , Enfermedades Inflamatorias del Intestino/complicaciones , Enfermedades Inflamatorias del Intestino/diagnóstico , Enfermedades Inflamatorias del Intestino/patología , Colonoscopía , Hiperplasia , Neoplasias Colorrectales/patología , Colitis Ulcerosa/complicaciones , Colitis Ulcerosa/diagnóstico , Colitis Ulcerosa/patología
7.
J Eukaryot Microbiol ; 70(4): e12971, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36825799

RESUMEN

Protosteloid amoebae are a paraphyletic assemblage of amoeboid protists found exclusively in the eukaryotic assemblage Amoebozoa. These amoebae can facultatively form a dispersal structure known as a fruiting body, or more specifically, a sporocarp, from a single amoeboid cell. Sporocarps consist of one to a few spores atop a noncellular stalk. Protosteloid amoebae are known in two out of three well-established major assemblages of Amoebozoa. Amoebae with a protosteloid life cycle are known in the major Amoebozoa lineages Discosea and Evosea but not in Tubulinea. To date, only one genus, which is monotypic, lacks sequence data and, therefore, remains phylogenetically homeless. To further clarify the evolutionary milieu of sporocarpic fruiting we used single-cell transcriptomics to obtain data from individual sporocarps of isolates of the protosteloid amoeba Microglomus paxillus. Our phylogenomic analyses using 229 protein coding markers suggest that M. paxillus is a member of the Discosea lineage of Amoebozoa most closely related to Mycamoeba gemmipara. Due to the hypervariable nature of the SSU rRNA sequence we were unable to further resolve the phylogenetic position of M. paxillus in taxon rich datasets using only this marker. Regardless, our results widen the known distribution of sporocarpy in Discosea and stimulate the debate between a single or multiple origins of sporocarpic fruiting in Amoebozoa.


Asunto(s)
Amoeba , Amebozoos , Filogenia , Amoeba/genética , Amebozoos/genética , Evolución Biológica , Eucariontes
8.
Curr Biol ; 32(9): R418-R420, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35537392

RESUMEN

Multicellular fruiting body formation through aggregation of individual cells has been known in Fonticla alba since the original description of the organism. A new study reveals the existence of a second transient collective cellular behavior separate from fruiting body formation.


Asunto(s)
Amoeba
9.
Mol Biol Evol ; 39(4)2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35348760

RESUMEN

Ochrophyta is an algal group belonging to the Stramenopiles and comprises diverse lineages of algae which contribute significantly to the oceanic ecosystems as primary producers. However, early evolution of the plastid organelle in Ochrophyta is not fully understood. In this study, we provide a well-supported tree of the Stramenopiles inferred by the large-scale phylogenomic analysis that unveils the eukaryvorous (nonphotosynthetic) protist Actinophrys sol (Actinophryidae) is closely related to Ochrophyta. We used genomic and transcriptomic data generated from A. sol to detect molecular traits of its plastid and we found no evidence of plastid genome and plastid-mediated biosynthesis, consistent with previous ultrastructural studies that did not identify any plastids in Actinophryidae. Moreover, our phylogenetic analyses of particular biosynthetic pathways provide no evidence of a current and past plastid in A. sol. However, we found more than a dozen organellar aminoacyl-tRNA synthases (aaRSs) that are of algal origin. Close relationships between aaRS from A. sol and their ochrophyte homologs document gene transfer of algal genes that happened before the divergence of Actinophryidae and Ochrophyta lineages. We further showed experimentally that organellar aaRSs of A. sol are targeted exclusively to mitochondria, although organellar aaRSs in Ochrophyta are dually targeted to mitochondria and plastids. Together, our findings suggested that the last common ancestor of Actinophryidae and Ochrophyta had not yet completed the establishment of host-plastid partnership as seen in the current Ochrophyta species, but acquired at least certain nuclear-encoded genes for the plastid functions.


Asunto(s)
Genoma de Plastidios , Estramenopilos , Ecosistema , Evolución Molecular , Filogenia , Plantas/genética , Plastidios/genética , Estramenopilos/genética
10.
Small GTPases ; 13(1): 100-113, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33779495

RESUMEN

Rab GTPase is a paralog-rich gene family that controls the maintenance of the eukaryotic cell compartmentalization system. Diverse eukaryotes have varying numbers of Rab paralogs. Currently, little is known about the evolutionary pattern of Rab GTPase in most major eukaryotic 'supergroups'. Here, we present a comprehensive phylogenetic reconstruction of the Rab GTPase gene family in the eukaryotic 'supergroup' Amoebozoa, a diverse lineage represented by unicellular and multicellular organisms. We demonstrate that Amoebozoa conserved 20 of the 23 ancestral Rab GTPases predicted to be present in the last eukaryotic common ancestor and massively expanded several 'novel' in-paralogs. Due to these 'novel' in-paralogs, the Rab family composition dramatically varies between the members of Amoebozoa; as a consequence, 'supergroup'-based studies may significantly change our current understanding of the evolution and diversity of this gene family. The high diversity of the Rab GTPase gene family in Amoebozoa makes this 'supergroup' a key lineage to study and advance our knowledge of the evolution of Rab in Eukaryotes.


Asunto(s)
Amebozoos , Proteínas de Unión al GTP rab , Filogenia , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Evolución Molecular , Amebozoos/genética , Amebozoos/metabolismo , Eucariontes/metabolismo
11.
PLoS Biol ; 19(8): e3001365, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34358228

RESUMEN

Phylogenomic analyses of hundreds of protein-coding genes aimed at resolving phylogenetic relationships is now a common practice. However, no software currently exists that includes tools for dataset construction and subsequent analysis with diverse validation strategies to assess robustness. Furthermore, there are no publicly available high-quality curated databases designed to assess deep (>100 million years) relationships in the tree of eukaryotes. To address these issues, we developed an easy-to-use software package, PhyloFisher (https://github.com/TheBrownLab/PhyloFisher), written in Python 3. PhyloFisher includes a manually curated database of 240 protein-coding genes from 304 eukaryotic taxa covering known eukaryotic diversity, a novel tool for ortholog selection, and utilities that will perform diverse analyses required by state-of-the-art phylogenomic investigations. Through phylogenetic reconstructions of the tree of eukaryotes and of the Saccharomycetaceae clade of budding yeasts, we demonstrate the utility of the PhyloFisher workflow and the provided starting database to address phylogenetic questions across a large range of evolutionary time points for diverse groups of organisms. We also demonstrate that undetected paralogy can remain in phylogenomic "single-copy orthogroup" datasets constructed using widely accepted methods such as all vs. all BLAST searches followed by Markov Cluster Algorithm (MCL) clustering and application of automated tree pruning algorithms. Finally, we show how the PhyloFisher workflow helps detect inadvertent paralog inclusions, allowing the user to make more informed decisions regarding orthology assignments, leading to a more accurate final dataset.


Asunto(s)
Eucariontes/genética , Filogenia , Programas Informáticos
12.
Mol Biol Evol ; 38(11): 5021-5033, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34323995

RESUMEN

Sexually dimorphic development is responsible for some of the most remarkable phenotypic variation found in nature. Alternative splicing of the transcription factor gene doublesex (dsx) is a highly conserved developmental switch controlling the expression of sex-specific pathways. Here, we leverage sex-specific differences in butterfly wing color pattern to characterize the genetic basis of sexually dimorphic development. We use RNA-seq, immunolocalization, and motif binding site analysis to test specific predictions about the role of dsx in the development of structurally based ultraviolet (UV) wing patterns in Zerene cesonia (Southern Dogface). Unexpectedly, we discover a novel duplication of dsx that shows a sex-specific burst of expression associated with the sexually dimorphic UV coloration. The derived copy consists of a single exon that encodes a DNA binding but no protein-binding domain and has experienced rapid amino-acid divergence. We propose the novel dsx paralog may suppress UV scale differentiation in females, which is supported by an excess of Dsx-binding sites at cytoskeletal and chitin-related genes with sex-biased expression. These findings illustrate the molecular flexibility of the dsx gene in mediating the differentiation of secondary sexual characteristics.


Asunto(s)
Mariposas Diurnas , Proteínas de Drosophila , Empalme Alternativo , Animales , Sitios de Unión , Mariposas Diurnas/genética , Mariposas Diurnas/metabolismo , Proteínas de Drosophila/genética , Femenino , Masculino , Caracteres Sexuales , Alas de Animales
13.
Curr Biol ; 31(14): 3073-3085.e3, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34077702

RESUMEN

Integrins are transmembrane receptors that activate signal transduction pathways upon extracellular matrix binding. The integrin-mediated adhesive complex (IMAC) mediates various cell physiological processes. Although the IMAC was thought to be specific to animals, in the past ten years these complexes were discovered in other lineages of Obazoa, the group containing animals, fungi, and several microbial eukaryotes. Very recently, many genomes and transcriptomes from Amoebozoa (the eukaryotic supergroup sister to Obazoa), other obazoans, orphan protist lineages, and the eukaryotes' closest prokaryotic relatives, have become available. To increase the resolution of where and when IMAC proteins exist and have emerged, we surveyed these newly available genomes and transcriptomes for the presence of IMAC proteins. Our results highlight that many of these proteins appear to have evolved earlier in eukaryote evolution than previously thought and that co-option of this apparently ancient protein complex was key to the emergence of animal-type multicellularity. The role of the IMACs in amoebozoans is unknown, but they play critical adhesive roles in at least some unicellular organisms.


Asunto(s)
Adhesión Celular , Eucariontes , Integrinas , Amoeba , Animales , Evolución Molecular , Hongos , Filogenia
15.
BMC Genomics ; 21(1): 448, 2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32600266

RESUMEN

BACKGROUND: Most diversity in the eukaryotic tree of life is represented by microbial eukaryotes, which is a polyphyletic group also referred to as protists. Among the protists, currently sequenced genomes and transcriptomes give a biased view of the actual diversity. This biased view is partly caused by the scientific community, which has prioritized certain microbes of biomedical and agricultural importance. Additionally, some protists remain difficult to maintain in cultures, which further influences what has been studied. It is now possible to bypass the time-consuming process of cultivation and directly analyze the gene content of single protist cells. Single-cell genomics was used in the first experiments where individual protists cells were genomically explored. Unfortunately, single-cell genomics for protists is often associated with low genome recovery and the assembly process can be complicated because of repetitive intergenic regions. Sequencing repetitive sequences can be avoided if single-cell transcriptomics is used, which only targets the part of the genome that is transcribed. RESULTS: In this study we test different modifications of Smart-seq2, a single-cell RNA sequencing protocol originally developed for mammalian cells, to establish a robust and more cost-efficient workflow for protists. The diplomonad Giardia intestinalis was used in all experiments and the available genome for this species allowed us to benchmark our results. We could observe increased transcript recovery when freeze-thaw cycles were added as an extra step to the Smart-seq2 protocol. Further we reduced the reaction volume and purified the amplified cDNA with alternative beads to test different cost-reducing changes of Smart-seq2. Neither improved the procedure, and reducing the volumes by half led to significantly fewer genes detected. We also added a 5' biotin modification to our primers and reduced the concentration of oligo-dT, to potentially reduce generation of artifacts. Except adding freeze-thaw cycles and reducing the volume, no other modifications lead to a significant change in gene detection. Therefore, we suggest adding freeze-thaw cycles to Smart-seq2 when working with protists and further consider our other modification described to improve cost and time-efficiency. CONCLUSIONS: The presented single-cell RNA sequencing workflow represents an efficient method to explore the diversity and cell biology of individual protist cells.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Giardia lamblia/genética , Análisis de la Célula Individual/métodos , Regulación de la Expresión Génica , Proteínas Protozoarias/genética , Análisis de Secuencia de ARN , Flujo de Trabajo
16.
Sci Rep ; 10(1): 8797, 2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32472019

RESUMEN

Unicellular protozoa that encyst individually upon starvation evolved at least eight times into organisms that instead form multicellular fruiting bodies with spores. The Dictyostelia are the largest and most complex group of such organisms. They can be subdivided into 4 major groups, with many species in groups 1-3 having additionally retained encystment. To understand fitness differences between spores and cysts, we measured long-term survival of spores and cysts under climate-mimicking conditions, investigated spore and cyst ultrastructure, and related fitness characteristics to species ecology. We found that spores and cysts survived 22 °C equally well, but that spores survived wet and dry frost better than cysts, with group 4 spores being most resilient. Spore walls consist of three layers and those of cysts of maximally two, while spores were also more compacted than cysts, with group 4 spores being the most compacted. Group 4 species were frequently isolated from arctic and alpine zones, which was rarely the case for group 1-3 species. We inferred a fossil-calibrated phylogeny of Dictyostelia, which showed that its two major branches diverged 0.52 billion years ago, following several global glaciations. Our results suggest that Dictyostelium multicellular sporulation was a likely adaptation to a cold climate.


Asunto(s)
Dictyostelium/clasificación , Dictyostelium/fisiología , Fósiles/parasitología , Aclimatación , Evolución Biológica , Clima Frío , Filogenia , Esporas/fisiología
17.
Nat Methods ; 17(5): 469-470, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32251395

Asunto(s)
Eucariontes
18.
Trends Ecol Evol ; 35(1): 43-55, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31606140

RESUMEN

For 15 years, the eukaryote Tree of Life (eToL) has been divided into five to eight major groupings, known as 'supergroups'. However, the tree has been profoundly rearranged during this time. The new eToL results from the widespread application of phylogenomics and numerous discoveries of major lineages of eukaryotes, mostly free-living heterotrophic protists. The evidence that supports the tree has transitioned from a synthesis of molecular phylogenetics and biological characters to purely molecular phylogenetics. Most current supergroups lack defining morphological or cell-biological characteristics, making the supergroup label even more arbitrary than before. Going forward, the combination of traditional culturing with maturing culture-free approaches and phylogenomics should accelerate the process of completing and resolving the eToL at its deepest levels.


Asunto(s)
Eucariontes , Células Eucariotas , Filogenia
19.
Mol Biol Evol ; 37(3): 651-659, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31693153

RESUMEN

Lateral gene transfer is a very common process in bacterial and archaeal evolution, playing an important role in the adaptation to new environments. In eukaryotes, its role and frequency remain highly debated, although recent research supports that gene transfer from bacteria to diverse eukaryotes may be much more common than previously appreciated. However, most of this research focused on animals and the true phylogenetic and functional impact of bacterial genes in less-studied microbial eukaryotic groups remains largely unknown. Here, we have analyzed transcriptome data from the deep-branching stramenopile Opalinidae, common members of frog gut microbiomes, and distantly related to the well-known genus Blastocystis. Phylogenetic analyses suggest the early acquisition of several bacterial genes in a common ancestor of both lineages. Those lateral gene transfers most likely facilitated the adaptation of the free-living ancestor of the Opalinidae-Blastocystis symbiotic group to new niches in the oxygen-depleted animal gut environment.


Asunto(s)
Proteínas Algáceas/genética , Bacterias/genética , Blastocystis/genética , Estramenopilos/genética , Animales , Blastocystis/clasificación , Evolución Molecular , Perfilación de la Expresión Génica , Transferencia de Gen Horizontal , Genes Bacterianos , Filogenia , Ranidae/parasitología , Estramenopilos/clasificación , Xenopus/parasitología
20.
Curr Biol ; 29(6): 991-1001.e3, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30827918

RESUMEN

Life was microbial for the majority of Earth's history, but as very few microbial lineages leave a fossil record, the Precambrian evolution of life remains shrouded in mystery. Shelled (testate) amoebae stand out as an exception with rich documented diversity in the Neoproterozoic as vase-shaped microfossils (VSMs). While there is general consensus that most of these can be attributed to the Arcellinida lineage in Amoebozoa, it is still unclear whether they can be used as key fossils for interpretation of early eukaryotic evolution. Here, we present a well-resolved phylogenomic reconstruction based on 250 genes, obtained using single-cell transcriptomic techniques from a representative selection of 19 Arcellinid testate amoeba taxa. The robust phylogenetic framework enables deeper interpretations of evolution in this lineage and demanded an updated classification of the group. Additionally, we performed reconstruction of ancestral morphologies, yielding hypothetical ancestors remarkably similar to existing Neoproterozoic VSMs. We demonstrate that major lineages of testate amoebae were already diversified before the Sturtian glaciation (720 mya), supporting the hypothesis that massive eukaryotic diversification took place in the early Neoproterozoic and congruent with the interpretation that VSM are arcellinid testate amoebae.


Asunto(s)
Fósiles/anatomía & histología , Lobosea/clasificación , Lobosea/genética , Genes Protozoarios , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...