Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Virol ; 97(2): e0003923, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36749077

RESUMEN

Many viruses sequester the materials needed for their replication into discrete subcellular factories. For rotaviruses (RVs), these factories are called viroplasms, and they are formed in the host cell cytosol via the process of liquid-liquid phase separation (LLPS). The nonstructural protein 2 (NSP2) and its binding partner, nonstructural protein 5 (NSP5), are critical for viroplasm biogenesis. Yet it is not fully understood how NSP2 and NSP5 cooperate to form factories. The C-terminal region (CTR) of NSP2 (residues 291 to 317) is flexible, allowing it to participate in domain-swapping interactions that promote interoctamer interactions and, presumably, viroplasm formation. Molecular dynamics simulations showed that a lysine-to-glutamic acid change at position 294 (K294E) reduces NSP2 CTR flexibility in silico. To test the impact of reduced NSP2 CTR flexibility during infection, we engineered a mutant RV bearing this change (rRV-NSP2K294E). Single-cycle growth assays revealed a >1.2-log reduction in endpoint titers for rRV-NSP2K294E versus the wild-type control (rRV-WT). Using immunofluorescence assays, we found that rRV-NSP2K294E formed smaller, more numerous viroplasms than rRV-WT. Live-cell imaging experiments confirmed these results and revealed that rRV-NSP2K294E factories had delayed fusion kinetics. Moreover, NSP2K294E and several other CTR mutants formed fewer viroplasm-like structures in NSP5 coexpressing cells than did control NSP2WT. Finally, NSP2K294E exhibited defects in its capacity to induce LLPS droplet formation in vitro when incubated alongside NSP5. These results underscore the importance of NSP2 CTR flexibility in supporting the biogenesis of RV factories. IMPORTANCE Viruses often condense the materials needed for their replication into discrete intracellular factories. For rotaviruses, agents of severe gastroenteritis in children, factory formation is mediated in part by an octameric protein called NSP2. A flexible C-terminal region of NSP2 has been proposed to link several NSP2 octamers together, a feature that might be important for factory formation. Here, we created a change in NSP2 that reduced C-terminal flexibility and analyzed the impact on rotavirus factories. We found that the change caused the formation of smaller and more numerous factories that could not readily fuse together like those of the wild-type virus. The altered NSP2 protein also had a reduced capacity to form factory-like condensates in a test tube. Together, these results add to our growing understanding of how NSP2 supports rotavirus factory formation-a key step of viral replication.


Asunto(s)
Rotavirus , Proteínas no Estructurales Virales , Replicación Viral , Fosforilación , Rotavirus/química , Rotavirus/fisiología , Proteínas no Estructurales Virales/química
2.
Redox Biol ; 53: 102338, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35609400

RESUMEN

Doxorubicin (DOX) is one of the most effective anticancer agents in clinical oncology. Its continued use, however, is severely limited by its dose-dependent cardiotoxicity which stems, in part, from its overproduction of reactive oxygen species (ROS) and often manifests itself as full-blown cardiomyopathy in patients, years after the cessation of treatment. Therefore, identifying DOX analogs, or prodrugs, with a diminished cardiotoxic profile is highly desirable. Herein, we describe a novel, H2O2-responsive DOX hybrid codrug (mutual prodrug) that has been rationally designed to concurrently liberate hydrogen sulfide (H2S), a purported cardioprotectant with anticancer activity, in an effort to maintain the antitumor effects of DOX while simultaneously reducing its cardiotoxic side effects. Experiments with cardiomyoblast cells in culture demonstrated a rapid accumulation of prodrug into the cells, but diminished apoptotic effects compared with DOX, dependent upon its release of H2S. Cells treated with the prodrug exhibited significantly higher Nrf2 activation relative to DOX-treated cells. Preliminary indications, using a mouse triple-negative breast cancer cell line sensitive to DOX treatment, are that the prodrug maintains considerable toxicity against the tumor-inducing cell line, suggesting significant promise for this prodrug as a cardioprotective chemotherapeutic to replace DOX.


Asunto(s)
Profármacos , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/etiología , Línea Celular Tumoral , Doxorrubicina/efectos adversos , Humanos , Peróxido de Hidrógeno , Profármacos/farmacología , Profármacos/uso terapéutico
3.
Antioxidants (Basel) ; 9(12)2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33287170

RESUMEN

Chlamydia trachomatis (Ct) is a bacterial intracellular pathogen responsible for a plethora of diseases ranging from blindness to pelvic inflammatory diseases and cervical cancer. Although this disease is effectively treated with antibiotics, concerns for development of resistance prompt the need for new low-cost treatments. Here we report the activity of spilanthol (SPL), a natural compound with demonstrated anti-inflammatory properties, against Ct infections. Using chemical probes selective for imaging mitochondrial protein sulfenylation and complementary assays, we identify an increase in mitochondrial oxidative state by SPL as the underlying mechanism leading to disruption of host cell F-actin cytoskeletal organization and inhibition of chlamydial infection. The peroxidation product of SPL (SPL endoperoxide, SPLE), envisioned to be the active compound in the cellular milieu, was chemically synthesized and showed more potent anti-chlamydial activity. Comparison of SPL and SPLE reactivity with mammalian peroxiredoxins, demonstrated preferred reactivity of SPLE with Prx3, and virtual lack of SPL reaction with any of the reduced Prx isoforms investigated. Cumulatively, these findings support the function of SPL as a pro-drug, which is converted to SPLE in the cellular milieu leading to inhibition of Prx3, increased mitochondrial oxidation and disruption of F-actin network, and inhibition of Ct infection.

4.
Sci Rep ; 10(1): 15201, 2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32939009

RESUMEN

Cytotoxic drugs that are mechanistically distinct from current chemotherapies are attractive components of personalized combination regimens for combatting aggressive forms of cancer. To gain insight into the cellular mechanism of a potent platinum-acridine anticancer agent (compound 1), a correlation analysis of NCI-60 compound screening results and gene expression profiles was performed. A plasma membrane transporter, the solute carrier (SLC) human multidrug and toxin extrusion protein 1 (hMATE1, SLC47A1), emerged as the dominant predictor of cancer cell chemosensitivity to the hybrid agent (Pearson correlation analysis, p < 10-5) across a wide range of tissues of origin. The crucial role of hMATE1 was validated in lung adenocarcinoma cells (A549), which expresses high levels of the membrane transporter, using transporter inhibition assays and transient knockdown of the SLC47A1 gene, in conjunction with quantification of intracellular accumulation of compound 1 and cell viability screening. Preliminary data also show that HCT-116 colon cancer cells, in which hMATE1 is epigenetically repressed, can be sensitized to compound 1 by priming the cells with the drugs EPZ-6438 (tazemetostat) and EED226. Collectively, these results suggest that hMATE1 may have applications as a pan-cancer molecular marker to identify and target tumors that are likely to respond to platinum-acridines.


Asunto(s)
Acridinas/química , Antineoplásicos/farmacología , Benzamidas/farmacología , Proteínas de Transporte de Catión Orgánico/genética , Compuestos Organoplatinos/farmacología , Platino (Metal)/química , Piridonas/farmacología , Sulfonas/farmacología , Triazoles/farmacología , Células A549 , Antineoplásicos/química , Compuestos de Bifenilo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Epigénesis Genética/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HCT116 , Humanos , Estructura Molecular , Morfolinas , Compuestos Organoplatinos/química , Pirimetamina/farmacología
5.
Org Biomol Chem ; 18(3): 495-499, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31850447

RESUMEN

A robust lipophilic dye, based on the structures of the benzothiadiazole heterocycle, was shown to be a potent fluorescent stain for the selective imaging of lipid droplets (LDs) within both live and fixed human cells. Its small molecular framework, large Stokes shift, and vastly improved photostability over that of the current status quo, Nile Red, highlight its tremendous potential as a versatile chemical tool for facilitating LD imaging and research.


Asunto(s)
Colorantes Fluorescentes/química , Gotas Lipídicas/metabolismo , Tiadiazoles/química , Células HeLa , Humanos , Gotas Lipídicas/química , Coloración y Etiquetado/métodos
6.
Anal Biochem ; 588: 113472, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31605694

RESUMEN

A method of RNA isolation using a solution of urea-LiCl as a denaturing agent was tested on stony coral. As the method does not require homogenization of tissues prior to their incubation in the denaturant, specimen collected in the field can be immediately transferred to the urea-LiCl solution. The method was also tested on tissues of other cnidarian species. RNA was isolated from fresh tissues of jellyfish and sea anemones using two protocols - that is, incubations in the urea-LiCl solution were either performed on homogenized tissues or on intact tissues or specimen. RNA quality was evaluated on a bioanalyser.


Asunto(s)
Cnidarios/genética , ARN/aislamiento & purificación , Animales , Cloruro de Litio/química , Urea/química
7.
Protein Sci ; 28(1): 216-227, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30367535

RESUMEN

Sulforaphane (SFN), a phytochemical found in broccoli and other cruciferous vegetables, is a potent antioxidant and anti-inflammatory agent with reported effects in cancer chemoprevention and suppression of infection with intracellular pathogens. Here we report on the impact of SFN on infection with Chlamydia trachomatis (Ct), a common sexually transmitted pathogen responsible for 131 million new cases annually worldwide. Astoundingly, we find that SFN as well as broccoli sprouts extract (BSE) promote Ct infection of human host cells. Both the number and size of Ct inclusions were increased when host cells were pretreated with SFN or BSE. The initial investigations presented here point to both the antioxidant and thiol alkylating properties of SFN as regulators of Ct infection. SFN decreased mitochondrial protein sulfenylation and promoted Ct development, which were both reversed by treatment with mitochondria-targeted paraquat (MitoPQ). Inhibition of the complement component 3 (complement C3) by SFN was also identified as a mechanism by which SFN promotes Ct infections. Mass spectrometry analysis found alkylation of cysteine 1010 (Cys1010) in complement C3 by SFN. The studies reported here raise awareness of the Ct infection promoting activity of SFN, and also identify potential mechanisms underlying this activity.


Asunto(s)
Infecciones por Chlamydia/metabolismo , Chlamydia trachomatis/metabolismo , Activación de Complemento/efectos de los fármacos , Complemento C3/metabolismo , Isotiocianatos/farmacología , Proteínas Mitocondriales/metabolismo , Infecciones por Chlamydia/patología , Células HeLa , Humanos , Oxidación-Reducción/efectos de los fármacos , Sulfóxidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA