Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 7(7): e41580, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22848533

RESUMEN

Understanding the fundamental niche of invasive species facilitates our ability to predict both dispersal patterns and invasion success and therefore provides the basis for better-informed conservation and management policies. Here we focus on Nile tilapia (Oreochromis niloticus Linnaeus, 1758), one of the most widely cultured fish worldwide and a species that has escaped local aquaculture facilities to become established in a coastal-draining river in Mississippi (northern Gulf of Mexico). Using empirical physiological data, logistic regression models were developed to predict the probabilities of Nile tilapia survival, growth, and reproduction at different combinations of temperature (14 and 30°C) and salinity (0-60, by increments of 10). These predictive models were combined with kriged seasonal salinity data derived from multiple long-term data sets to project the species' fundamental niche in Mississippi coastal waters during normal salinity years (averaged across all years) and salinity patterns in extremely wet and dry years (which might emerge more frequently under scenarios of climate change). The derived fundamental niche projections showed that during the summer, Nile tilapia is capable of surviving throughout Mississippi's coastal waters but growth and reproduction were limited to river mouths (or upriver). Overwinter survival was also limited to river mouths. The areas where Nile tilapia could survive, grow, and reproduce increased during extremely wet years (2-368%) and decreased during extremely dry years (86-92%) in the summer with a similar pattern holding for overwinter survival. These results indicate that Nile tilapia is capable of 1) using saline waters to gain access to other watersheds throughout the region and 2) establishing populations in nearshore, low-salinity waters, particularly in the western portion of coastal Mississippi.


Asunto(s)
Adaptación Fisiológica , Cíclidos/fisiología , Especies Introducidas , Modelos Biológicos , Reproducción/fisiología , Animales , Golfo de México , Mississippi
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA