Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Voice ; 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36031505

RESUMEN

INTRODUCTION: Voice assessment and treatment involve the manipulation of all the subsystems of voice production, and may lead to production of respirable aerosol particles that pose a greater risk of potential viral transmission via inhalation of respirable pathogens (eg, SARS-CoV-2) than quiet breathing or conversational speech. OBJECTIVE: To characterise the production of respirable aerosol particles during a selection of voice assessment therapy tasks. METHODS: We recruited 23 healthy adult participants (12 males, 11 females), 11 of whom were speech-language pathologists specialising in voice disorders. We used an aerodynamic and an optical particle sizer to measure the number concentration and particle size distributions of respirable aerosols generated during a variety of voice assessment and therapy tasks. The measurements were carried out in a laminar flow operating theatre, with a near-zero background aerosol concentration, allowing us to quantify the number concentration and size distributions of respirable aerosol particles produced from assessment/therapy tasks studied. RESULTS: Aerosol number concentrations generated while performing assessment/therapy tasks were log-normally distributed among individuals with no significant differences between professionals (speech-language pathologists) and non-professionals or between males and females. Activities produced up to 32 times the aerosol number concentration of breathing and 24 times that of speech at 70-80 dBA. In terms of aerosol mass, activities produced up to 163 times the mass concentration of breathing and up to 36 times the mass concentration of speech. Voicing was a significant factor in aerosol production; aerosol number/mass concentrations generated during the voiced activities were 1.1-5 times higher than their unvoiced counterpart activities. Additionally, voiced activities produced bigger respirable aerosol particles than their unvoiced variants except the trills. Humming generated higher aerosol concentrations than sustained /a/, fricatives, speaking (70-80 dBA), and breathing. Oscillatory semi-occluded vocal tract exercises (SOVTEs) generated higher aerosol number/mass concentrations than the activities without oscillation. Water resistance therapy (WRT) generated the most aerosol of all activities, ∼10 times higher than speaking at 70-80 dBA and >30 times higher than breathing. CONCLUSIONS: All activities generated more aerosol than breathing, although a sizeable minority were no different to speaking. Larger number concentrations and larger particle sizes appear to be generated by activities with higher suspected airflows, with the greatest involving intraoral pressure oscillation and/or an oscillating oral articulation (WRT or trilling).

2.
Commun Med (Lond) ; 2: 44, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35603287

RESUMEN

Background: The coronavirus disease-19 (COVID-19) pandemic led to the prohibition of group-based exercise and the cancellation of sporting events. Evaluation of respiratory aerosol emissions is necessary to quantify exercise-related transmission risk and inform mitigation strategies. Methods: Aerosol mass emission rates are calculated from concurrent aerosol and ventilation data, enabling absolute comparison. An aerodynamic particle sizer (0.54-20 µm diameter) samples exhalate from within a cardiopulmonary exercise testing mask, at rest, while speaking and during cycle ergometer-based exercise. Exercise challenge testing is performed to replicate typical gym-based exercise and very vigorous exercise, as determined by a preceding maximally exhaustive exercise test. Results: We present data from 25 healthy participants (13 males, 12 females; 36.4 years). The size of aerosol particles generated at rest and during exercise is similar (unimodal ~0.57-0.71 µm), whereas vocalization also generated aerosol particles of larger size (i.e. was bimodal ~0.69 and ~1.74 µm). The aerosol mass emission rate during speaking (0.092 ng s-1; minute ventilation (VE) 15.1 L min-1) and vigorous exercise (0.207 ng s-1, p = 0.726; VE 62.6 L min-1) is similar, but lower than during very vigorous exercise (0.682 ng s-1, p < 0.001; VE 113.6 L min-1). Conclusions: Vocalisation drives greater aerosol mass emission rates, compared to breathing at rest. Aerosol mass emission rates in exercise rise with intensity. Aerosol mass emission rates during vigorous exercise are no different from speaking at a conversational level. Mitigation strategies for airborne pathogens for non-exercise-based social interactions incorporating vocalisation, may be suitable for the majority of exercise settings. However, the use of facemasks when exercising may be less effective, given the smaller size of particles produced.

3.
Interface Focus ; 12(2): 20210078, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35261733

RESUMEN

Aerosol particles of respirable size are exhaled when individuals breathe, speak and sing and can transmit respiratory pathogens between infected and susceptible individuals. The COVID-19 pandemic has brought into focus the need to improve the quantification of the particle number and mass exhalation rates as one route to provide estimates of viral shedding and the potential risk of transmission of viruses. Most previous studies have reported the number and mass concentrations of aerosol particles in an exhaled plume. We provide a robust assessment of the absolute particle number and mass exhalation rates from measurements of minute ventilation using a non-invasive Vyntus Hans Rudolf mask kit with straps housing a rotating vane spirometer along with measurements of the exhaled particle number concentrations and size distributions. Specifically, we report comparisons of the number and mass exhalation rates for children (12-14 years old) and adults (19-72 years old) when breathing, speaking and singing, which indicate that child and adult cohorts generate similar amounts of aerosol when performing the same activity. Mass exhalation rates are typically 0.002-0.02 ng s-1 from breathing, 0.07-0.2 ng s-1 from speaking (at 70-80 dBA) and 0.1-0.7 ng s-1 from singing (at 70-80 dBA). The aerosol exhalation rate increases with increasing sound volume for both children and adults when both speaking and singing.

4.
Behav Res Methods ; 54(3): 1200-1226, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34505993

RESUMEN

Social cognition refers to a broad range of cognitive processes and skills that allow individuals to interact with and understand others, including a variety of skills from infancy through preschool and beyond, e.g., joint attention, imitation, and belief understanding. However, no measures examine socio-cognitive development from birth through preschool. Current test batteries and parent-report measures focus either on infancy, or toddlerhood through preschool (and beyond). We report six studies in which we developed and tested a new 21-item parent-report measure of social cognition targeting 0-47 months: the Early Social Cognition Inventory (ESCI). Study 1 (N = 295) revealed the ESCI has excellent internal reliability, and a two-factor structure capturing social cognition and age. Study 2 (N = 605) also showed excellent internal reliability and confirmed the two-factor structure. Study 3 (N = 84) found a medium correlation between the ESCI and a researcher-administered social cognition task battery. Study 4 (N = 46) found strong 1-month test-retest reliability. Study 5 found longitudinal stability (6 months: N = 140; 12 months: N = 39), and inter-observer reliability between parents (N = 36) was good, and children's scores increased significantly over 6 and 12 months. Study 6 showed the ESCI was internally reliable within countries (Australia, Canada, United Kingdom, United States, Trinidad and Tobago); parent ethnicity; parent education; and age groups from 4-39 months. ESCI scores positively correlated with household income (UK); children with siblings had higher scores; and Australian parents reported lower scores than American, British, and Canadian parents.


Asunto(s)
Cognición , Cognición Social , Australia , Canadá , Niño , Preescolar , Humanos , Lactante , Psicometría , Reproducibilidad de los Resultados , Estados Unidos
5.
Behav Res Methods ; 54(4): 1928-1953, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34792779

RESUMEN

We created a 20-item parent-report measure of humor development from 1 to 47 months: the Early Humor Survey (EHS). We developed the EHS with Study 1 (N = 219) using exploratory factor analysis, demonstrating the EHS works with 1- to 47-month-olds with excellent reliability and a strong correlation with age, showing its developmental trajectory. We replicated the EHS with Study 2 (N = 587), revealing a one-factor structure, showing excellent reliability, and replicating a strong correlation with age. Study 3 (N = 84) found the EHS correlated with a humor experiment, however it no longer correlated once age was accounted for, suggesting low convergent validity. Subsamples of parents from Studies 2 and 3 showed excellent inter-observer reliability between both parents, and good longitudinal stability after 6 months. Combining participants from all studies, we found the EHS is reliable across countries (Australia, United Kingdom, United States), parent education levels, and children's age groups. We charted expected humor development by age (in months), and the expected proportion of children who would appreciate each humor type by age (in months). Finally, we found no demographic differences (e.g., country: Australia, Canada, United Kingdom, United States; parents' education) in humor when pooling all data. The EHS is a valuable tool that will allow researchers to understand how humor: (1) emerges; and (2) affects other aspects of life, e.g., making friends, coping with stress, and creativity. The EHS is helpful for parents, early years educators, and children's media, as it systematically charts early humor development.


Asunto(s)
Padres , Canadá , Niño , Análisis Factorial , Humanos , Reproducibilidad de los Resultados , Encuestas y Cuestionarios , Estados Unidos
6.
Animals (Basel) ; 11(7)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201689

RESUMEN

Periodontal disease is one of the most common conditions affecting dogs worldwide and is reported to be particularly prevalent in racing greyhounds. A range of potential risk factors have been hypothesised. Previous research has suggested that regular tooth brushing can reduce both calculus and gingivitis, but the frequency required is unclear. Here, we report a controlled blinded in situ trial, in which kennel staff brushed 160 racing greyhounds' teeth (living at six kennel establishments), either weekly, daily or never over a two-month period. All of the visible teeth were scored for calculus and gingivitis, using previously validated scales. We calculated average scores for each of the three teeth groups and overall whole mouth scores, averaging the teeth groups. Changes were compared to the baseline. After two months, the total calculus scores (controlling for baseline) were significantly different in the three treatment groups, (F(2,129) = 10.76, p < 0.001) with both weekly and daily brushing resulting in significant reductions. Gingivitis was also significantly different between groups (F(2,128) = 4.57, p = 0.012), but in this case, only daily brushing resulted in a significant reduction. Although the dogs in different kennels varied significantly in their levels of both calculus (F(5,129) = 8.64, p < 0.001) and gingivitis (F(5,128) = 3.51 p = 0.005), the intervention was similarly effective in all of the establishments. The teeth groups varied, and the incisors were not significantly affected by the treatment. Since the trainers implementing the routine, reported a minimal time commitment and positive experiences, we suggest that daily brushing is recommended for racing greyhounds, and that any instructions or demonstrations should include attention to all teeth groups including the incisors. Similar trials need to be conducted with retired greyhounds since these have been shown to present particularly high levels of periodontal disease.

7.
BMC Vet Res ; 16(1): 242, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32660541

RESUMEN

Reproducible science requires transparent reporting. The ARRIVE guidelines (Animal Research: Reporting of In Vivo Experiments) were originally developed in 2010 to improve the reporting of animal research. They consist of a checklist of information to include in publications describing in vivo experiments to enable others to scrutinise the work adequately, evaluate its methodological rigour, and reproduce the methods and results. Despite considerable levels of endorsement by funders and journals over the years, adherence to the guidelines has been inconsistent, and the anticipated improvements in the quality of reporting in animal research publications have not been achieved. Here, we introduce ARRIVE 2.0. The guidelines have been updated and information reorganised to facilitate their use in practice. We used a Delphi exercise to prioritise and divide the items of the guidelines into 2 sets, the "ARRIVE Essential 10," which constitutes the minimum requirement, and the "Recommended Set," which describes the research context. This division facilitates improved reporting of animal research by supporting a stepwise approach to implementation. This helps journal editors and reviewers verify that the most important items are being reported in manuscripts. We have also developed the accompanying Explanation and Elaboration document, which serves (1) to explain the rationale behind each item in the guidelines, (2) to clarify key concepts, and (3) to provide illustrative examples. We aim, through these changes, to help ensure that researchers, reviewers, and journal editors are better equipped to improve the rigour and transparency of the scientific process and thus reproducibility.


Asunto(s)
Experimentación Animal , Guías como Asunto , Informe de Investigación , Animales , Lista de Verificación
8.
Br J Pharmacol ; 177(16): 3617-3624, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32662519

RESUMEN

Reproducible science requires transparent reporting. The ARRIVE guidelines (Animal Research: Reporting of In Vivo Experiments) were originally developed in 2010 to improve the reporting of animal research. They consist of a checklist of information to include in publications describing in vivo experiments to enable others to scrutinise the work adequately, evaluate its methodological rigour, and reproduce the methods and results. Despite considerable levels of endorsement by funders and journals over the years, adherence to the guidelines has been inconsistent, and the anticipated improvements in the quality of reporting in animal research publications have not been achieved. Here, we introduce ARRIVE 2.0. The guidelines have been updated and information reorganised to facilitate their use in practice. We used a Delphi exercise to prioritise and divide the items of the guidelines into 2 sets, the "ARRIVE Essential 10," which constitutes the minimum requirement, and the "Recommended Set," which describes the research context. This division facilitates improved reporting of animal research by supporting a stepwise approach to implementation. This helps journal editors and reviewers verify that the most important items are being reported in manuscripts. We have also developed the accompanying Explanation and Elaboration (E&E) document, which serves (1) to explain the rationale behind each item in the guidelines, (2) to clarify key concepts, and (3) to provide illustrative examples. We aim, through these changes, to help ensure that researchers, reviewers, and journal editors are better equipped to improve the rigour and transparency of the scientific process and thus reproducibility.


Asunto(s)
Experimentación Animal , Animales , Lista de Verificación , Reproducibilidad de los Resultados , Proyectos de Investigación , Informe de Investigación
9.
PLoS Biol ; 18(7): e3000410, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32663219

RESUMEN

Reproducible science requires transparent reporting. The ARRIVE guidelines (Animal Research: Reporting of In Vivo Experiments) were originally developed in 2010 to improve the reporting of animal research. They consist of a checklist of information to include in publications describing in vivo experiments to enable others to scrutinise the work adequately, evaluate its methodological rigour, and reproduce the methods and results. Despite considerable levels of endorsement by funders and journals over the years, adherence to the guidelines has been inconsistent, and the anticipated improvements in the quality of reporting in animal research publications have not been achieved. Here, we introduce ARRIVE 2.0. The guidelines have been updated and information reorganised to facilitate their use in practice. We used a Delphi exercise to prioritise and divide the items of the guidelines into 2 sets, the "ARRIVE Essential 10," which constitutes the minimum requirement, and the "Recommended Set," which describes the research context. This division facilitates improved reporting of animal research by supporting a stepwise approach to implementation. This helps journal editors and reviewers verify that the most important items are being reported in manuscripts. We have also developed the accompanying Explanation and Elaboration (E&E) document, which serves (1) to explain the rationale behind each item in the guidelines, (2) to clarify key concepts, and (3) to provide illustrative examples. We aim, through these changes, to help ensure that researchers, reviewers, and journal editors are better equipped to improve the rigour and transparency of the scientific process and thus reproducibility.


Asunto(s)
Experimentación Animal , Guías como Asunto , Informe de Investigación , Animales , Lista de Verificación
10.
PLoS Biol ; 18(7): e3000411, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32663221

RESUMEN

Improving the reproducibility of biomedical research is a major challenge. Transparent and accurate reporting is vital to this process; it allows readers to assess the reliability of the findings and repeat or build upon the work of other researchers. The ARRIVE guidelines (Animal Research: Reporting In Vivo Experiments) were developed in 2010 to help authors and journals identify the minimum information necessary to report in publications describing in vivo experiments. Despite widespread endorsement by the scientific community, the impact of ARRIVE on the transparency of reporting in animal research publications has been limited. We have revised the ARRIVE guidelines to update them and facilitate their use in practice. The revised guidelines are published alongside this paper. This explanation and elaboration document was developed as part of the revision. It provides further information about each of the 21 items in ARRIVE 2.0, including the rationale and supporting evidence for their inclusion in the guidelines, elaboration of details to report, and examples of good reporting from the published literature. This document also covers advice and best practice in the design and conduct of animal studies to support researchers in improving standards from the start of the experimental design process through to publication.


Asunto(s)
Experimentación Animal , Guías como Asunto , Informe de Investigación , Experimentación Animal/ética , Crianza de Animales Domésticos , Animales , Intervalos de Confianza , Vivienda para Animales , Evaluación de Resultado en la Atención de Salud , Publicaciones , Distribución Aleatoria , Reproducibilidad de los Resultados , Tamaño de la Muestra
11.
J Cereb Blood Flow Metab ; 40(9): 1769-1777, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32663096

RESUMEN

Reproducible science requires transparent reporting. The ARRIVE guidelines (Animal Research: Reporting of In Vivo Experiments) were originally developed in 2010 to improve the reporting of animal research. They consist of a checklist of information to include in publications describing in vivo experiments to enable others to scrutinise the work adequately, evaluate its methodological rigour, and reproduce the methods and results. Despite considerable levels of endorsement by funders and journals over the years, adherence to the guidelines has been inconsistent, and the anticipated improvements in the quality of reporting in animal research publications have not been achieved. Here, we introduce ARRIVE 2.0. The guidelines have been updated and information reorganised to facilitate their use in practice. We used a Delphi exercise to prioritise and divide the items of the guidelines into 2 sets, the "ARRIVE Essential 10," which constitutes the minimum requirement, and the "Recommended Set," which describes the research context. This division facilitates improved reporting of animal research by supporting a stepwise approach to implementation. This helps journal editors and reviewers verify that the most important items are being reported in manuscripts. We have also developed the accompanying Explanation and Elaboration document, which serves (1) to explain the rationale behind each item in the guidelines, (2) to clarify key concepts, and (3) to provide illustrative examples. We aim, through these changes, to help ensure that researchers, reviewers, and journal editors are better equipped to improve the rigour and transparency of the scientific process and thus reproducibility.

12.
Exp Physiol ; 105(9): 1459-1466, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32666546

RESUMEN

Reproducible science requires transparent reporting. The ARRIVE guidelines (Animal Research: Reporting of In Vivo Experiments) were originally developed in 2010 to improve the reporting of animal research. They consist of a checklist of information to include in publications describing in vivo experiments to enable others to scrutinise the work adequately, evaluate its methodological rigour, and reproduce the methods and results. Despite considerable levels of endorsement by funders and journals over the years, adherence to the guidelines has been inconsistent, and the anticipated improvements in the quality of reporting in animal research publications have not been achieved. Here, we introduce ARRIVE 2.0. The guidelines have been updated and information reorganised to facilitate their use in practice. We used a Delphi exercise to prioritise and divide the items of the guidelines into 2 sets, the "ARRIVE Essential 10," which constitutes the minimum requirement, and the "Recommended Set," which describes the research context. This division facilitates improved reporting of animal research by supporting a stepwise approach to implementation. This helps journal editors and reviewers verify that the most important items are being reported in manuscripts. We have also developed the accompanying Explanation and Elaboration document, which serves (1) to explain the rationale behind each item in the guidelines, (2) to clarify key concepts, and (3) to provide illustrative examples. We aim, through these changes, to help ensure that researchers, reviewers, and journal editors are better equipped to improve the rigour and transparency of the scientific process and thus reproducibility.


Asunto(s)
Experimentación Animal/normas , Guías como Asunto , Animales , Lista de Verificación , Reproducibilidad de los Resultados , Proyectos de Investigación
13.
J Physiol ; 598(18): 3793-3801, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32666574

RESUMEN

Reproducible science requires transparent reporting. The ARRIVE guidelines (Animal Research: Reporting of In Vivo Experiments) were originally developed in 2010 to improve the reporting of animal research. They consist of a checklist of information to include in publications describing in vivo experiments to enable others to scrutinise the work adequately, evaluate its methodological rigour, and reproduce the methods and results. Despite considerable levels of endorsement by funders and journals over the years, adherence to the guidelines has been inconsistent, and the anticipated improvements in the quality of reporting in animal research publications have not been achieved. Here, we introduce ARRIVE 2.0. The guidelines have been updated and information reorganised to facilitate their use in practice. We used a Delphi exercise to prioritise and divide the items of the guidelines into 2 sets, the 'ARRIVE Essential 10,' which constitutes the minimum requirement, and the 'Recommended Set,' which describes the research context. This division facilitates improved reporting of animal research by supporting a stepwise approach to implementation. This helps journal editors and reviewers verify that the most important items are being reported in manuscripts. We have also developed the accompanying Explanation and Elaboration document, which serves (1) to explain the rationale behind each item in the guidelines, (2) to clarify key concepts, and (3) to provide illustrative examples. We aim, through these changes, to help ensure that researchers, reviewers, and journal editors are better equipped to improve the rigour and transparency of the scientific process and thus reproducibility.


Asunto(s)
Experimentación Animal , Animales , Lista de Verificación , Reproducibilidad de los Resultados , Informe de Investigación
14.
Sci Rep ; 10(1): 8933, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32488058

RESUMEN

Affective states are key determinants of animal welfare. Assessing such states under field conditions is thus an important goal in animal welfare science. The rapid Defence Cascade (DC) response (startle, freeze) to sudden unexpected stimuli is a potential indicator of animal affect; humans and rodents in negative affective states often show potentiated startle magnitude and freeze duration. To be a practical field welfare indicator, quick and easy measurement is necessary. Here we evaluate whether DC responses can be quantified in pigs using computer vision. 280 video clips of induced DC responses made by 12 pigs were analysed by eye to provide 'ground truth' measures of startle magnitude and freeze duration which were also estimated by (i) sparse feature tracking computer vision image analysis of 200 Hz video, (ii) load platform, (iii) Kinect depth camera, and (iv) Kinematic data. Image analysis data strongly predicted ground truth measures and were strongly positively correlated with these and all other estimates of DC responses. Characteristics of the DC-inducing stimulus, pig orientation relative to it, and 'relaxed-tense' pig behaviour prior to it moderated DC responses. Computer vision image analysis thus offers a practical approach to measuring pig DC responses, and potentially pig affect and welfare, under field conditions.


Asunto(s)
Bienestar del Animal , Reflejo de Sobresalto/fisiología , Porcinos/fisiología , Afecto/fisiología , Animales , Conducta Animal , Fenómenos Biomecánicos/fisiología , Femenino , Interpretación de Imagen Asistida por Computador/métodos , Masculino , Reproducibilidad de los Resultados , Porcinos/psicología , Grabación en Video
15.
Psychol Methods ; 25(6): 787-801, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32309962

RESUMEN

A first step when fitting multilevel models to continuous responses is to explore the degree of clustering in the data. Researchers fit variance-component models and then report the proportion of variation in the response that is due to systematic differences between clusters. Equally they report the response correlation between units within a cluster. These statistics are popularly referred to as variance partition coefficients (VPCs) and intraclass correlation coefficients (ICCs). When fitting multilevel models to categorical (binary, ordinal, or nominal) and count responses, these statistics prove more challenging to calculate. For categorical response models, researchers appeal to their latent response formulations and report VPCs/ICCs in terms of latent continuous responses envisaged to underly the observed categorical responses. For standard count response models, however, there are no corresponding latent response formulations. More generally, there is a paucity of guidance on how to partition the variation. As a result, applied researchers are likely to avoid or inadequately report and discuss the substantive importance of clustering and cluster effects in their studies. A recent article drew attention to a little-known exact algebraic expression for the VPC/ICC for the special case of the two-level random-intercept Poisson model. In this article, we make a substantial new contribution. First, we derive exact VPC/ICC expressions for more flexible negative binomial models that allows for overdispersion, a phenomenon which often occurs in practice. Then we derive exact VPC/ICC expressions for three-level and random-coefficient extensions to these models. We illustrate our work with an application to student absenteeism. (PsycInfo Database Record (c) 2020 APA, all rights reserved).


Asunto(s)
Análisis de Varianza , Modelos Estadísticos , Análisis Multinivel , Psicología/métodos , Absentismo , Humanos , Estudiantes
16.
BMJ Open Sci ; 4(1): e100115, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34095516

RESUMEN

Reproducible science requires transparent reporting. The ARRIVE guidelines (Animal Research: Reporting of In Vivo Experiments) were originally developed in 2010 to improve the reporting of animal research. They consist of a checklist of information to include in publications describing in vivo experiments to enable others to scrutinise the work adequately, evaluate its methodological rigour and reproduce the methods and results. Despite considerable levels of endorsement by funders and journals over the years, adherence to the guidelines has been inconsistent, and the anticipated improvements in the quality of reporting in animal research publications have not been achieved. Here, we introduce ARRIVE 2.0. The guidelines have been updated and information reorganised to facilitate their use in practice. We used a Delphi exercise to prioritise and divide the items of the guidelines into two sets, the 'ARRIVE Essential 10', which constitutes the minimum requirement, and the 'Recommended Set', which describes the research context. This division facilitates improved reporting of animal research by supporting a stepwise approach to implementation. This helps journal editors and reviewers verify that the most important items are being reported in manuscripts. We have also developed the accompanying Explanation and Elaboration document, which serves (1) to explain the rationale behind each item in the guidelines, (2) to clarify key concepts and (3) to provide illustrative examples. We aim, through these changes, to help ensure that researchers, reviewers and journal editors are better equipped to improve the rigour and transparency of the scientific process and thus reproducibility.

17.
Sci Rep ; 9(1): 15211, 2019 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31645617

RESUMEN

Aggression in group-housed laboratory mice is a serious animal welfare concern. Further understanding of the causes of mouse aggression could have a significant impact on a large number of laboratory animals. The NC3Rs led a crowdsourcing project to collect data on the prevalence and potential triggers of aggression in laboratory mice. The crowdsourcing approach collected data from multiple institutions and is the first time such an approach has been applied to a laboratory animal welfare problem. Technicians observed group-housed, male mice during daily routine cage checks and recorded all incidents of aggression-related injuries. In total, 44 facilities participated in the study and data was collected by 143 animal technicians. A total of 788 incidents of aggression-related injuries were reported across a sample population of 137,580 mice. The mean facility-level prevalence of aggression-related incidents reported across facilities was equivalent to 15 in 1,000 mice. Key factors influencing the prevalence of aggression included strain; number of mice per cage; how mice were selected into a cage; cage cleaning protocols; and transfer of nesting material. Practical recommendations have been provided to minimise aggressive behaviour in group-housed, male mice based upon the results of the study and taking into consideration the current published literature.


Asunto(s)
Animales de Laboratorio , Aglomeración , Vivienda para Animales , Ratones , Agresión , Bienestar del Animal , Animales , Animales de Laboratorio/fisiología , Conducta Animal , Colaboración de las Masas , Femenino , Masculino , Ratones/fisiología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
18.
Glob Chang Biol ; 24(12): 5909-5918, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30288876

RESUMEN

The rapid global spread of artificial light at night is causing unprecedented disruption to ecosystems. In otherwise dark environments, street lights restrict the use of major flight routes by some bats, including the threatened lesser horseshoe bat Rhinolophus hipposideros, and may disrupt foraging. Using radio tracking, we examined the response of individual female R. hipposideros to experimental street lights placed on hedgerows used as major flight routes. Hedgerows were illuminated on one side over four nights using lights with different emission spectra, while the opposite side of the hedge was not illuminated. Automated bat detectors were used to examine changes in overall bat activity by R. hipposideros and other bat species present. R. hipposideros activity reduced significantly under all light types, including red light, challenging a previously held assumption that red light is safe for bats. Despite this, R. hipposideros rapidly adapted to the presence of lights by switching their flight paths to the dark side of the hedgerow, enabling them to reach foraging sites without restriction. Red light had no effect on the activity of the other species present. Slow-flying Myotis spp. avoided orange, white and green light, while more agile Pipistrellus spp. were significantly more active at these light types compared to dark controls, most probably in response to accumulations of insect prey. No effect of any light type was found for Nyctalus or Eptesicus spp. Our findings demonstrate that caution must be used when promoting forms of lighting that are thought to be safe for wildlife before they are tested more widely. We argue that it is essential to preserve dark corridors to mitigate the impacts of artificial light at night on bat activity and movements.


Asunto(s)
Quirópteros/fisiología , Oscuridad , Vuelo Animal , Luz , Animales , Animales Salvajes , Ecosistema , Femenino , Estrés Fisiológico
19.
Biol Lett ; 14(2)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29491031

RESUMEN

Affective states influence decision-making under ambiguity in humans and other animals. Individuals in a negative state tend to interpret ambiguous cues more negatively than individuals in a positive state. We demonstrate that the fruit fly, Drosophila melanogaster, also exhibits state-dependent changes in cue interpretation. Drosophila were trained on a Go/Go task to approach a positive (P) odour associated with a sugar reward and actively avoid a negative (N) odour associated with shock. Trained flies were then either shaken to induce a purported negative state or left undisturbed (control), and given a choice between: air or P; air or N; air or ambiguous odour (1 : 1 blend of P : N). Shaken flies were significantly less likely to approach the ambiguous odour than control flies. This 'judgement bias' may be mediated by changes in neural activity that reflect evolutionarily primitive affective states. We cannot say whether such states are consciously experienced, but use of this model organism's versatile experimental tool kit may facilitate elucidation of their neural and genetic basis.


Asunto(s)
Evolución Biológica , Conducta de Elección/fisiología , Drosophila melanogaster/fisiología , Animales , Conducta Animal , Señales (Psicología) , Toma de Decisiones
20.
Stat Methods Med Res ; 27(11): 3478-3491, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-28459180

RESUMEN

Aim To present a flexible model for repeated measures longitudinal growth data within individuals that allows trends over time to incorporate individual-specific random effects. These may reflect the timing of growth events and characterise within-individual variability which can be modelled as a function of age. Subjects and methods A Bayesian model is developed that includes random effects for the mean growth function, an individual age-alignment random effect and random effects for the within-individual variance function. This model is applied to data on boys' heights from the Edinburgh longitudinal growth study and to repeated weight measurements of a sample of pregnant women in the Avon Longitudinal Study of Parents and Children cohort. Results The mean age at which the growth curves for individual boys are aligned is 11.4 years, corresponding to the mean 'take off' age for pubertal growth. The within-individual variance (standard deviation) is found to decrease from 0.24 cm2 (0.50 cm) at 9 years for the 'average' boy to 0.07 cm2 (0.25 cm) at 16 years. Change in weight during pregnancy can be characterised by regression splines with random effects that include a large woman-specific random effect for the within-individual variation, which is also correlated with overall weight and weight gain. Conclusions The proposed model provides a useful extension to existing approaches, allowing considerable flexibility in describing within- and between-individual differences in growth patterns.


Asunto(s)
Teorema de Bayes , Desarrollo Infantil/fisiología , Modelos Estadísticos , Algoritmos , Niño , Femenino , Crecimiento y Desarrollo/fisiología , Humanos , Estudios Longitudinales , Masculino , Embarazo , Aumento de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...