Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3893, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719799

RESUMEN

Maintaining food safety and quality is critical for public health and food security. Conventional food preservation methods, such as pasteurization and dehydration, often change the overall organoleptic quality of the food products. Herein, we demonstrate a method that affects only a thin surface layer of the food, using beef as a model. In this method, Joule heating is generated by applying high electric power to a carbon substrate in <1 s, which causes a transient increase of the substrate temperature to > ~2000 K. The beef surface in direct contact with the heating substrate is subjected to ultra-high temperature flash heating, leading to the formation of a microbe-inactivated, dehydrated layer of ~100 µm in thickness. Aerobic mesophilic bacteria, Enterobacteriaceae, yeast and mold on the treated samples are inactivated to a level below the detection limit and remained low during room temperature storage of 5 days. Meanwhile, the product quality, including visual appearance, texture, and nutrient level of the beef, remains mostly unchanged. In contrast, microorganisms grow rapidly on the untreated control samples, along with a rapid deterioration of the meat quality. This method might serve as a promising preservation technology for securing food safety and quality.


Asunto(s)
Microbiología de Alimentos , Conservación de Alimentos , Animales , Bovinos , Conservación de Alimentos/métodos , Microbiología de Alimentos/métodos , Carne/microbiología , Calor , Carne Roja/microbiología , Calefacción , Inocuidad de los Alimentos/métodos
2.
Science ; 382(6671): 684-691, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37943922

RESUMEN

Passive daytime radiative cooling materials could reduce the energy needed for building cooling up to 60% by reflecting sunlight and emitting long-wave infrared (LWIR) radiation into the cold Universe (~3 kelvin). However, developing passive cooling structures that are both practical to manufacture and apply while also displaying long-term environmental stability is challenging. We developed a randomized photonic composite consisting of a microporous glass framework that features selective LWIR emission along with relatively high solar reflectance and aluminum oxide particles that strongly scatter sunlight and prevent densification of the porous structure during manufacturing. This microporous glass coating enables a temperature drop of ~3.5° and 4°C even under high-humidity conditions (up to 80%) during midday and nighttime, respectively. This radiative "cooling glass" coating maintains high solar reflectance even when exposed to harsh conditions, including water, ultraviolet radiation, soiling, and high temperatures.

3.
Nature ; 623(7989): 964-971, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38030779

RESUMEN

Plasmas can generate ultra-high-temperature reactive environments that can be used for the synthesis and processing of a wide range of materials1,2. However, the limited volume, instability and non-uniformity of plasmas have made it challenging to scalably manufacture bulk, high-temperature materials3-8. Here we present a plasma set-up consisting of a pair of carbon-fibre-tip-enhanced electrodes that enable the generation of a uniform, ultra-high temperature and stable plasma (up to 8,000 K) at atmospheric pressure using a combination of vertically oriented long and short carbon fibres. The long carbon fibres initiate the plasma by micro-spark discharge at a low breakdown voltage, whereas the short carbon fibres coalesce the discharge into a volumetric and stable ultra-high-temperature plasma. As a proof of concept, we used this process to synthesize various extreme materials in seconds, including ultra-high-temperature ceramics (for example, hafnium carbonitride) and refractory metal alloys. Moreover, the carbon-fibre electrodes are highly flexible and can be shaped for various syntheses. This simple and practical plasma technology may help overcome the challenges in high-temperature synthesis and enable large-scale electrified plasma manufacturing powered by renewable electricity.

4.
Nature ; 616(7957): 488-494, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37076729

RESUMEN

Depolymerization is a promising strategy for recycling waste plastic into constituent monomers for subsequent repolymerization1. However, many commodity plastics cannot be selectively depolymerized using conventional thermochemical approaches, as it is difficult to control the reaction progress and pathway. Although catalysts can improve the selectivity, they are susceptible to performance degradation2. Here we present a catalyst-free, far-from-equilibrium thermochemical depolymerization method that can generate monomers from commodity plastics (polypropylene (PP) and poly(ethylene terephthalate) (PET)) by means of pyrolysis. This selective depolymerization process is realized by two features: (1) a spatial temperature gradient and (2) a temporal heating profile. The spatial temperature gradient is achieved using a bilayer structure of porous carbon felt, in which the top electrically heated layer generates and conducts heat down to the underlying reactor layer and plastic. The resulting temperature gradient promotes continuous melting, wicking, vaporization and reaction of the plastic as it encounters the increasing temperature traversing the bilayer, enabling a high degree of depolymerization. Meanwhile, pulsing the electrical current through the top heater layer generates a temporal heating profile that features periodic high peak temperatures (for example, about 600 °C) to enable depolymerization, yet the transient heating duration (for example, 0.11 s) can suppress unwanted side reactions. Using this approach, we depolymerized PP and PET to their monomers with yields of about 36% and about 43%, respectively. Overall, this electrified spatiotemporal heating (STH) approach potentially offers a solution to the global plastic waste problem.

5.
Chem Rev ; 123(6): 2737-2831, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36898130

RESUMEN

Confined fluids and electrolyte solutions in nanopores exhibit rich and surprising physics and chemistry that impact the mass transport and energy efficiency in many important natural systems and industrial applications. Existing theories often fail to predict the exotic effects observed in the narrowest of such pores, called single-digit nanopores (SDNs), which have diameters or conduit widths of less than 10 nm, and have only recently become accessible for experimental measurements. What SDNs reveal has been surprising, including a rapidly increasing number of examples such as extraordinarily fast water transport, distorted fluid-phase boundaries, strong ion-correlation and quantum effects, and dielectric anomalies that are not observed in larger pores. Exploiting these effects presents myriad opportunities in both basic and applied research that stand to impact a host of new technologies at the water-energy nexus, from new membranes for precise separations and water purification to new gas permeable materials for water electrolyzers and energy-storage devices. SDNs also present unique opportunities to achieve ultrasensitive and selective chemical sensing at the single-ion and single-molecule limit. In this review article, we summarize the progress on nanofluidics of SDNs, with a focus on the confinement effects that arise in these extremely narrow nanopores. The recent development of precision model systems, transformative experimental tools, and multiscale theories that have played enabling roles in advancing this frontier are reviewed. We also identify new knowledge gaps in our understanding of nanofluidic transport and provide an outlook for the future challenges and opportunities at this rapidly advancing frontier.

6.
Nat Nanotechnol ; 18(2): 168-176, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36585515

RESUMEN

Cotton textiles are ubiquitous in daily life and are also one of the primary mediums for transmitting viruses and bacteria. Conventional approaches to fabricating antiviral and antibacterial textiles generally load functional additives onto the surface of the fabric and/or their microfibres. However, such modifications are susceptible to deterioration after long-term use due to leaching of the additives. Here we show a different method to impregnate copper ions into the cellulose matrix to form a copper ion-textile (Cu-IT), in which the copper ions strongly coordinate with the oxygen-containing polar functional groups (for example, hydroxyl) of the cellulose chains. The Cu-IT displays high antiviral and antibacterial performance against tobacco mosaic virus and influenza A virus, and Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa and Bacillus subtilis bacteria due to the antimicrobial properties of copper. Furthermore, the strong coordination bonding of copper ions with the hydroxyl functionalities endows the Cu-IT with excellent air/water retainability and superior mechanical stability, which can meet daily use and resist repeated washing. This method to fabricate Cu-IT is cost-effective, ecofriendly and highly scalable, and this textile appears very promising for use in household products, public facilities and medical settings.


Asunto(s)
Antivirales , Cobre , Textiles/microbiología , Antibacterianos , Celulosa
7.
Sci Adv ; 8(49): eadd2031, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36490337

RESUMEN

Supramolecular frameworks have been widely synthesized for ion transport applications. However, conventional approaches of constructing ion transport pathways in supramolecular frameworks typically require complex processes and display poor scalability, high cost, and limited sustainability. Here, we report the scalable and cost-effective synthesis of an ion-conducting (e.g., Na+) cellulose-derived supramolecule (Na-CS) that features a three-dimensional, hierarchical, and crystalline structure composed of massively aligned, one-dimensional, and ångström-scale open channels. Using wood-based Na-CS as a model material, we achieve high ionic conductivities (e.g., 0.23 S/cm in 20 wt% NaOH at 25 °C) even with a highly dense microstructure, in stark contrast to conventional membranes that typically rely on large pores (e.g., submicrometers to a few micrometers) to obtain comparable ionic conductivities. This synthesis approach can be universally applied to a variety of cellulose materials beyond wood, including cotton textiles, fibers, paper, and ink, which suggests excellent potential for a number of applications such as ion-conductive membranes, ionic cables, and ionotronic devices.

9.
Nat Commun ; 13(1): 6724, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36344574

RESUMEN

Multi-principal element alloys (MPEA) demonstrate superior synergetic properties compared to single-element predominated traditional alloys. However, the rapid melting and uniform mixing of multi-elements for the fabrication of MPEA structural materials by metallic 3D printing is challenging as it is difficult to achieve both a high temperature and uniform temperature distribution in a sufficient heating source simultaneously. Herein, we report an ultrahigh-temperature melt printing method that can achieve rapid multi-elemental melting and uniform mixing for MPEA fabrication. In a typical fabrication process, multi-elemental metal powders are loaded into a high-temperature column zone that can be heated up to 3000 K via Joule heating, followed by melting on the order of milliseconds and mixing into homogenous alloys, which we attribute to the sufficiently uniform high-temperature heating zone. As proof-of-concept, we successfully fabricated single-phase bulk NiFeCrCo MPEA with uniform grain size. This ultrahigh-temperature rapid melt printing process provides excellent potential toward MPEA 3D printing.

10.
Nature ; 605(7910): 470-476, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35585339

RESUMEN

Conventional thermochemical syntheses by continuous heating under near-equilibrium conditions face critical challenges in improving the synthesis rate, selectivity, catalyst stability and energy efficiency, owing to the lack of temporal control over the reaction temperature and time, and thus the reaction pathways1-3. As an alternative, we present a non-equilibrium, continuous synthesis technique that uses pulsed heating and quenching (for example, 0.02 s on, 1.08 s off) using a programmable electric current to rapidly switch the reaction between high (for example, up to 2,400 K) and low temperatures. The rapid quenching ensures high selectivity and good catalyst stability, as well as lowers the average temperature to reduce the energy cost. Using CH4 pyrolysis as a model reaction, our programmable heating and quenching technique leads to high selectivity to value-added C2 products (>75% versus <35% by the conventional non-catalytic method and versus <60% by most conventional methods using optimized catalysts). Our technique can be extended to a range of thermochemical reactions, such as NH3 synthesis, for which we achieve a stable and high synthesis rate of about 6,000 µmol gFe-1 h-1 at ambient pressure for >100 h using a non-optimized catalyst. This study establishes a new model towards highly efficient non-equilibrium thermochemical synthesis.

11.
Small ; 18(17): e2107951, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35355404

RESUMEN

Silica glasses have wide applications in industrial fields due to their extraordinary properties, such as high transparency, low thermal expansion coefficient, and high hardness. However, current methods of fabricating silica glass generally require long thermal treatment time (up to hours) and complex setups, leading to high cost and slow manufacturing speed. Herein, to obtain high-quality glasses using a facile and rapid method, an ultrafast high-temperature sintering (UHS) technique is reported that requires no additional pressure. Using UHS, silica precursors can be densified in seconds due to the large heating rate (up to 102 K s-1 ) of closely placed carbon heaters. The typical sintering time is as short as ≈10 s, ≈1-3 orders of magnitude faster than other methods. The sintered glasses exhibit relative densities of > 98% and high visible transmittances of ≈90%. The powder-based sintering process also allows rapid doping of metal ions to fabricate colored glasses. The UHS is further extended to sinter other functional glasses such as indium tin oxide (ITO)-doped silica glass, and other transparent ceramics such as Gd-doped yttrium aluminum garnet. This study demonstrates an UHS proof-of-concept for the rapid fabrication of high-quality glass and opens an avenue toward rapid discovery of transparent materials.

12.
Small ; 18(11): e2104761, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35049145

RESUMEN

High-entropy nanoparticles have received notable attention due to their tunable properties and broad material space. However, these nanoparticles are not suitable for certain applications (e.g., battery electrodes), where their microparticle (submicron to micron) counterparts are more preferred. Conventional methods used for synthesizing high-entropy nanoparticles often involve various ultrafast shock processes. To increase the size thereby achieving high-entropy microparticles, longer reaction time (e.g., heating duration) is usually used, which may also lead to undesired particle overgrowth or even densified microstructures. In this work, an approach based on Joule heating for synthesizing high-entropy oxide (HEO) microparticles with uniform elemental distribution is reported. In particular, two key synthesis conditions are identified to achieve high-quality HEO microparticles: 1) the precursors need to be loosely packed to avoid densification; 2) the heating time needs to be accurately controlled to tens of seconds instead of using milliseconds (thermal shock) that leads to nanoparticles or longer heating duration that forms bulk structures. The utility of the synthesized HEO microparticles for a range of applications, including high-performance Li-ion battery anode and water oxidation catalyst. This study opens up a new door toward synthesizing high-entropy microparticles with high quality and broad material space.

13.
Sci Adv ; 8(4): eabm4322, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35089780

RESUMEN

Nanoscale multi-principal element intermetallics (MPEIs) may provide a broad and tunable compositional space of active, high-surface area materials with potential applications such as catalysis and magnetics. However, MPEI nanoparticles are challenging to fabricate because of the tendency of the particles to grow/agglomerate or phase-separated during annealing. Here, we demonstrate a disorder-to-order phase transition approach that enables the synthesis of ultrasmall (4 to 5 nm) and stable MPEI nanoparticles (up to eight elements). We apply just 5 min of Joule heating to promote the phase transition of the nanoparticles into L10 intermetallic structure, which is then preserved by rapidly cooling. This disorder-to-order transition results in phase-stable nanoscale MPEIs with compositions (e.g., PtPdAuFeCoNiCuSn), which have not been previously attained by traditional synthetic methods. This synthesis strategy offers a new paradigm for developing previously unexplored MPEI nanoparticles by accessing a nanoscale-size regime and novel compositions with potentially broad applications.

14.
Nature ; 590(7844): 47-56, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33536649

RESUMEN

Cellulose is the most abundant biopolymer on Earth, found in trees, waste from agricultural crops and other biomass. The fibres that comprise cellulose can be broken down into building blocks, known as fibrillated cellulose, of varying, controllable dimensions that extend to the nanoscale. Fibrillated cellulose is harvested from renewable resources, so its sustainability potential combined with its other functional properties (mechanical, optical, thermal and fluidic, for example) gives this nanomaterial unique technological appeal. Here we explore the use of fibrillated cellulose in the fabrication of materials ranging from composites and macrofibres, to thin films, porous membranes and gels. We discuss research directions for the practical exploitation of these structures and the remaining challenges to overcome before fibrillated cellulose materials can reach their full potential. Finally, we highlight some key issues towards successful manufacturing scale-up of this family of materials.


Asunto(s)
Biotecnología/métodos , Biotecnología/tendencias , Celulosa/química , Nanoestructuras/química , Desarrollo Sostenible/tendencias , Materiales Biocompatibles/química , Geles/química , Humanos , Porosidad
15.
Sci Adv ; 6(47)2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33208368

RESUMEN

Current ceramic solid-state electrolyte (SSE) films have low ionic conductivities (10-8 to 10-5 S/cm ), attributed to the amorphous structure or volatile Li loss. Herein, we report a solution-based printing process followed by rapid (~3 s) high-temperature (~1500°C) reactive sintering for the fabrication of high-performance ceramic SSE films. The SSEs exhibit a dense, uniform structure and a superior ionic conductivity of up to 1 mS/cm. Furthermore, the fabrication time from precursor to final product is typically ~5 min, 10 to 100 times faster than conventional SSE syntheses. This printing and rapid sintering process also allows the layer-by-layer fabrication of multilayer structures without cross-contamination. As a proof of concept, we demonstrate a printed solid-state battery with conformal interfaces and excellent cycling stability. Our technique can be readily extended to other thin-film SSEs, which open previously unexplores opportunities in developing safe, high-performance solid-state batteries and other thin-film devices.

16.
Science ; 368(6490): 521-526, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32355030

RESUMEN

Ceramics are an important class of materials with widespread applications because of their high thermal, mechanical, and chemical stability. Computational predictions based on first principles methods can be a valuable tool in accelerating materials discovery to develop improved ceramics. It is essential to experimentally confirm the material properties of such predictions. However, materials screening rates are limited by the long processing times and the poor compositional control from volatile element loss in conventional ceramic sintering techniques. To overcome these limitations, we developed an ultrafast high-temperature sintering (UHS) process for the fabrication of ceramic materials by radiative heating under an inert atmosphere. We provide several examples of the UHS process to demonstrate its potential utility and applications, including advancements in solid-state electrolytes, multicomponent structures, and high-throughput materials screening.

17.
Adv Mater ; 31(48): e1903270, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31592564

RESUMEN

Wood is a ubiquitous material, widely used in human society, that features naturally abundant, aligned longitudinal cells (e.g., tracheids in softwood and fibers/vessels in hardwood) with diameters of ≈50-1000 µm. Here, the realization of, fine patterns on a wood surface ranging in size from 40 nm to 50 µm by precision imprinting is described. The precision imprinting is enabled by releasing cellulose fibril aggregates from the bondage of lignin through the delignification process, then imprinting in wet condition and fixing the designed configuration in the dry state. Various precision structures on a wood surface using imprinting technology, including dot arrays, lines, triangular features, and other complex patterns, are successfully demonstrated. Even multiscale structures with nanosized lines on the surface of micrometer hemiballs can be acquired. As a proof of concept, the use of surface-imprinted wood as a microlens array (MLA), which exhibits superior imaging ability and thermal stability even at a high temperature up to 150 °C compared with traditional polystyrene MLA, is demonstrated. This precision imprinted wood may open new possibilities toward environmentally friendly devices and applications in optics, biology, electronics, etc.

18.
Nat Rev Chem ; 3(6): 375-392, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32789186

RESUMEN

Previously unwelcome, defects are emerging as a new frontier of research, providing a molecular focal point to study the coupling of electrons, excitons, phonons and spin in low-dimensional materials. This opportunity is particularly intriguing in semiconducting single-walled carbon nanotubes, in which covalently bonding organic functional groups to the sp 2 carbon lattice can produce tunable sp 3 quantum defects that fluoresce brightly in the shortwave IR, emitting pure single photons at room temperature. These novel physical properties have made such synthetic defects, or 'organic colour centres', exciting new systems for chemistry, physics, materials science, engineering and quantum technologies. This Review examines progress in this emerging field and presents a unified description of this new family of quantum emitters, as well as providing an outlook of the rapidly expanding research and applications of synthetic defects.

19.
Mol Cell ; 65(6): 975-984.e5, 2017 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-28306513

RESUMEN

Tardigrades are microscopic animals that survive a remarkable array of stresses, including desiccation. How tardigrades survive desiccation has remained a mystery for more than 250 years. Trehalose, a disaccharide essential for several organisms to survive drying, is detected at low levels or not at all in some tardigrade species, indicating that tardigrades possess potentially novel mechanisms for surviving desiccation. Here we show that tardigrade-specific intrinsically disordered proteins (TDPs) are essential for desiccation tolerance. TDP genes are constitutively expressed at high levels or induced during desiccation in multiple tardigrade species. TDPs are required for tardigrade desiccation tolerance, and these genes are sufficient to increase desiccation tolerance when expressed in heterologous systems. TDPs form non-crystalline amorphous solids (vitrify) upon desiccation, and this vitrified state mirrors their protective capabilities. Our study identifies TDPs as functional mediators of tardigrade desiccation tolerance, expanding our knowledge of the roles and diversity of disordered proteins involved in stress tolerance.


Asunto(s)
Aclimatación , Deshidratación/enzimología , Enzimas/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Tardigrada/enzimología , Animales , Deshidratación/genética , Desecación , Estabilidad de Enzimas , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Conformación Proteica , Interferencia de ARN , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Tardigrada/genética , Regulación hacia Arriba , Vitrificación
20.
ACS Nano ; 8(5): 4239-47, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24669843

RESUMEN

We demonstrate efficient creation of defect-bound trions through chemical doping of controlled sp(3) defect sites in semiconducting, single-walled carbon nanotubes. These tricarrier quasi-particles luminesce almost as brightly as their parent excitons, indicating a remarkably efficient conversion of excitons into trions. Substantial populations of trions can be generated at low excitation intensities, even months after a sample has been prepared. Photoluminescence spectroscopy reveals a trion binding energy as high as 262 meV, which is substantially larger than any previously reported values. This discovery may have important ramifications not only for studying the basic physics of trions but also for the application of these species in fields such as photonics, electronics, and bioimaging.


Asunto(s)
Nanotecnología/métodos , Nanotubos de Carbono/química , Semiconductores , Espectrofotometría , Carbono/química , Diagnóstico por Imagen , Electrónica , Electrones , Luz , Luminiscencia , Mediciones Luminiscentes , Tamaño de la Partícula , Fotones , Teoría Cuántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...