Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pharmacol Exp Ther ; 380(1): 34-46, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34663676

RESUMEN

Novel combinations of specific opioid agonists like loperamide and oxymorphindole targeting the µ- and δ-opioid receptors, respectively, have shown increased potency with minimized opioid-associated risks. However, whether their interaction is pharmacokinetic or pharmacodynamic in nature has not been determined. This study quantitatively determined whether these drugs have a pharmacokinetic interaction that alters systemic disposition or central nervous system (CNS) distribution. We performed intravenous and oral in vivo pharmacokinetic assessments of both drugs after discrete dosing and administration in combination to determine whether the combination had any effect on systemic pharmacokinetic parameters or CNS exposure. Drugs were administered at 5 or 10 mg/kg i.v. or 30 mg/kg orally to institute for cancer research (ICR) mice and 5 mg/kg i.v. to Friend leukemia virus strain B mice of the following genotypes: wild-type, breast cancer resistance protein (Bcrp-/- ) (Bcrp knockout), Mdr1a/b-/- [P-glycoprotein (P-gp) knockout], and Bcrp-/- Mdr1a/b-/- (triple knockout). In the combination, clearance of oxymorphindole (OMI) was reduced by approximately half, and the plasma area under the concentration-time curve (AUC) increased. Consequently, brain and spinal cord AUCs for OMI in the combination also increased proportionately. Both loperamide and OMI are P-gp substrates, but administration of the two drugs in combination does not alter efflux transport at the CNS barriers. Because OMI alone shows appreciable brain penetration but little therapeutic efficacy on its own, and because loperamide's CNS distribution is unchanged in the combination, the mechanism of action for the increased potency of the combination is most likely pharmacodynamic and most likely occurs at receptors in the peripheral nervous system. This combination has favorable characteristics for future development. SIGNIFICANCE STATEMENT: Opioids have yet to be replaced as the most effective treatments for moderate-to-severe pain and chronic pain, but their side effects are dangerous. Combinations of opioids with peripheral activity, such as loperamide and oxymorphindole, would be valuable in that they are effective at much lower doses and have reduced risks for dangerous side effects because the µ-opioid receptor agonist is largely excluded from the CNS.


Asunto(s)
Sistema Nervioso Central/metabolismo , Loperamida/farmacocinética , Morfolinas/farmacocinética , Receptores Opioides/agonistas , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Animales , Combinación de Medicamentos , Sinergismo Farmacológico , Femenino , Genotipo , Loperamida/administración & dosificación , Masculino , Ratones , Ratones Endogámicos ICR , Morfolinas/administración & dosificación , Distribución Tisular
2.
Anesthesiology ; 131(3): 649-663, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31343460

RESUMEN

BACKGROUND: The long-term use of opioids for analgesia carries significant risk for tolerance, addiction, and diversion. These adverse effects are largely mediated by µ-opioid receptors in the central nervous system. Based on the authors' previous observation that morphine and δ-opioid receptor agonists synergize in spinal cord in a protein kinase Cε-dependent manner, they predicted that this µ-opioid receptor-δ-opioid receptor synergy would take place in the central terminals of nociceptive afferent fibers and generalize to their peripheral terminals. Therefore, the authors hypothesized that loperamide, a highly efficacious µ-opioid receptor agonist that is excluded from the central nervous system, and oxymorphindole, a δ-opioid receptor agonist that was shown to synergize with morphine spinally, would synergistically reverse complete Freund's adjuvant-induced hyperalgesia. METHODS: Using the Hargreaves assay for thermal nociception, the von Frey assay for mechanical nociception and the complete Freund's adjuvant-induced model of inflammatory pain, we tested the antinociceptive and antihyperalgesic effect of loperamide, oxymorphindole, or the loperamide-oxymorphindole combination. Animals (Institute for Cancer Research [ICR] CD1 strain mice; n = 511) received drug by systemic injection, intraplantar injection to the injured paw, or a transdermal solution on the injured paw. Dose-response curves for each route of administration and each nociceptive test were generated, and analgesic synergy was assessed by isobolographic analysis. RESULTS: In naïve animals, the loperamide-oxymorphindole combination ED50 value was 10 times lower than the theoretical additive ED50 value whether given systemically or locally. In inflamed animals, the combination was 150 times more potent systemically, and 84 times more potent locally. All combinations showed statistically significant synergy when compared to the theoretical additive values, as verified by isobolographic analysis. The antihyperalgesia was ablated by a peripherally-restricted opioid antagonist. CONCLUSIONS: From these data we conclude that the loperamide-oxymorphindole combination synergistically reverses complete Freund's adjuvant-induced inflammatory hyperalgesia. The authors also conclude that this interaction is mediated by opioid receptors located in the peripheral nervous system.


Asunto(s)
Analgesia/métodos , Loperamida/uso terapéutico , Morfolinas/uso terapéutico , Dolor/tratamiento farmacológico , Receptores Opioides delta/agonistas , Animales , Antidiarreicos/uso terapéutico , Modelos Animales de Enfermedad , Quimioterapia Combinada/métodos , Masculino
3.
J Neurophysiol ; 117(6): 2218-2223, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28298301

RESUMEN

Optogenetic methods that utilize expression of the light-sensitive protein channelrhodopsin-2 (ChR2) in neurons have enabled selective activation of specific subtypes or groups of neurons to determine their functions. Using a transgenic mouse model in which neurons natively expressing Nav1.8 (a tetrodotoxin-resistant voltage-gated sodium channel) also express the light-gated channel ChR2, we have been able to determine the functional properties of Nav1.8-expressing cutaneous nociceptors of the glabrous skin in vivo. Most (44 of 53) of the C-fiber nociceptors isolated from Nav1.8-ChR2+ mice were found to be responsive to blue (470 nm) light. Response characteristics, including conduction velocity and responses to mechanical stimuli, were comparable between nociceptors isolated from Nav1.8-ChR2+ and control mice. Interestingly, while none of the non-light-responsive C-fibers were sensitive to heat or cold, nearly all (77%) light-sensitive fibers were excited by mechanical and thermal stimuli, suggesting that Nav1.8 is predominantly expressed by C-fiber nociceptors that are responsive to multiple stimulus modalities. The ability to activate peripheral nociceptors with light provides a method of stimulation that is noninvasive, does not require mechanical interruption of the skin, and accesses receptive fields that might be difficult or impossible to stimulate with standard stimuli while allowing repeated stimulation without injuring the skin.NEW & NOTEWORTHY Transgenic mice that express the blue light-sensitive protein channelrhodopsin2 (ChR2) in nociceptive nerve fibers that contain voltage-gated sodium channel Nav1.8 were used to determine functional properties of these afferent fibers. Electrophysiological recordings in vivo revealed that most nociceptive fibers that possess Nav1.8 are C-fiber nociceptors that respond to multiple stimulus modalities. Furthermore, responses evoked by blue light stimulation were comparable to those elicited by noxious mechanical, heat, and cold stimuli.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Fibras Nerviosas Amielínicas/metabolismo , Nociceptores/metabolismo , Piel/inervación , Potenciales de Acción , Animales , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Femenino , Miembro Posterior , Masculino , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.8/genética , Nocicepción/fisiología , Optogenética , Estimulación Física , Piel/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...