Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurogastroenterol Motil ; 26(12): 1694-704, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25298006

RESUMEN

BACKGROUND: Increasing evidence indicates a positive effect of probiotics on the nervous system. The objective of this study was to determine if probiotic Lactobacillus rhamnosus GG (LGG) and/or prebiotics polydextrose/galactooligosaccharide (PDX/GOS) can alter the colonic sensitivity in a neonatal rat model of chronic visceral hyperalgesia and to determine whether altered sensitivity is associated with changes in neurotransmitter levels in the brain. METHODS: Chronic visceral hyperalgesia was induced in rats by intracolonic administration of zymosan for 3 days during postnatal day 14-16 (P14-P16). After weaning (P21), these pups were divided into groups that received either (1) control diet (CD), (2) PDX/GOS, (3) LGG, or (4) PDX/GOS + LGG. These diets were continued until visceral sensitivity was tested at P60. The viscero-motor response (VMR) to graded colorectal distension (CRD) was determined by measuring the electromyographic (EMG) activity from the abdominal external oblique muscles. The levels of neurotransmitters and biogenic amines were quantified in the frontal cortex, subcortex, brain stem, and cerebellum. KEY RESULTS: At P60, the VMR to CRD in the neonatal zymosan-treated rats was significantly higher than neonatal saline-treated rats. In contrast, neonatal zymosan-treated rats that received PDX/GOS or LGG did not exhibit visceral hyperalgesia. The levels of serotonin, noradrenaline, and dopamine were significantly altered in LGG-treated rats compared to other groups. CONCLUSIONS & INFERENCES: Results document that in rats LGG can attenuate neonatally induced chronic visceral pain measured in adulthood. Prolonged intake of LGG alters some key brain neurotransmitters and biogenic amines that could be involved in pain modulation.


Asunto(s)
Encéfalo/metabolismo , Hiperalgesia/prevención & control , Intestinos , Probióticos/farmacología , Dolor Visceral/prevención & control , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Hiperalgesia/metabolismo , Inflamación/inducido químicamente , Lacticaseibacillus rhamnosus , Manometría , Neurotransmisores/análisis , Neurotransmisores/biosíntesis , Prebióticos , Ratas , Ratas Sprague-Dawley , Dolor Visceral/metabolismo , Zimosan/toxicidad
2.
Neuroscience ; 219: 243-54, 2012 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-22626644

RESUMEN

The functional role of serotonergic 5-HT(1A) receptors in the modulation of visceral pain is controversial. The objective of this study was to systematically examine the mechanism and site of action of a selective 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)-tetralin (DPAT) on visceral pain. In the behavioral model of visceral pain, systemic injection (5-250 µg/kg) of DPAT produced a significant increase in the viscero-motor response (VMR) to colorectal distension (CRD) and this effect was blocked by the selective 5-HT(1A) receptor antagonist WAY-100135 (5 mg/kg, s.c.). Similarly, intrathecal (i.t.) injection (5 µmol) of DPAT into the lumbo-sacral (L6-S1) spinal cord produced a significant increase in VMR. The administration of N-methyl D-aspartate (NMDA) receptor antagonist AP5 (50 µg/kg) prior to DPAT injection completely blocked the pronociceptive effect of DPAT. Similarly, DPAT failed to increase VMR in rats chronically treated with NR1 subunit-targeted antisense oligonucleotide (ON), whereas the drug increased VMR in rats treated with mismatched-ON. Chronic i.t. injection of allylglycine (AG), a γ-amino decarboxylase (GAD) enzyme inhibitor, produced significant increase in VMRs, suggesting that the inhibition of GABA synthesis produces pronociception. In AG-treated rats, i.t. injection of DPAT failed to further increase in VMR, suggesting that the DPAT action is linked to GABA release. Similarly, WAY-100135 failed to attenuate VMR in AG-treated rats, suggesting that unlike DPAT, AG action is not via the activation of 5-HT(1A) receptors. In electrophysiology experiments, DPAT (50 µg/kg) significantly increased the responses of spinal neurons to CRD, but did not influence the mechanotransduction property of CRD-sensitive pelvic nerve afferent fibers. The effect of DPAT on spinal neurons remained unaffected when tested in spinal-transected (C1-C2) rats. These results indicate that the 5-HT(1A) receptor agonist DPAT produces pronociceptive effects, primarily via the activation of presynaptic 5-HT(1A) receptors in GABAergic neuron to restrict GABA release and thereby disinhibits the excitatory glutamatergic neurons in the spinal cord.


Asunto(s)
Receptor de Serotonina 5-HT1A/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Médula Espinal/metabolismo , Dolor Visceral/metabolismo , Animales , Neuronas GABAérgicas/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Agonistas del Receptor de Serotonina 5-HT1/farmacología , Dolor Visceral/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA